Research Summary: Siting and ODETLAP

Wenli Li1*, W. Randolph Franklin1, Salles V. G. Magalhães12, Marcus V. A. Andrade2

1Rensselaer Polytechnic Institute
2Universidade Federal de Viçosa

*liw9@rpi.edu
Multiple observer siting – Workflow

• Purpose: placing observers to cover targets on a terrain
• Workflow: VIX -> FINDMAX -> VIEWSHED -> SITE
Multiple observer siting – Optimization 1

• VIX
 • Algorithm
 1. For each point
 2. Pick a number of random targets
 3. Compute the ratio of visible targets
 • Approximate visibility

• Fixed \textit{stride}: 1, 2, 4, 8, ...
• Increasing \textit{stride}: \(2^i\)
Multiple observer siting – Optimization 2

• SITE
 • Algorithm
 1. While not stop
 2. Compute the area of $V \cup C$ for the viewshed V of each unused observer
 3. Add the observer with the largest area
 4. Update the cumulative viewshed $C = C \cup V$

• $Area(V \cup C)$: $O(n^2)$
• $Area(V - C_V)$: $O(roi^2)$
• Compute for unused observers within $2 \times roi$ of the last addition
Multiple observer siting – Parallelization

- OpenMP: compiler directives
- CUDA
 1. Compute visibility indices
 2. Select tentative observers
 3. Compute observer viewsheds
 4. Find observers within $2 \times roi$ of the last addition
 5. Compute the extra area of an observer viewshed
 6. Find the observer for addition
 7. Update the cumulative viewshed
Multiple observer siting – Results 1

- 16K DEM, 26896 tentative observers
 - Running time of CUDA VIX
 - Percentage coverage
 - Number of selected observers

<table>
<thead>
<tr>
<th>stride</th>
<th>30 targets</th>
<th>120 targets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time (s)</td>
<td>Coverage</td>
</tr>
<tr>
<td>1</td>
<td>87</td>
<td>95.5</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>95.5</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>95.5</td>
</tr>
<tr>
<td>8</td>
<td>19</td>
<td>95.5</td>
</tr>
<tr>
<td>2^i</td>
<td>11</td>
<td>96.0</td>
</tr>
</tbody>
</table>
Multiple observer siting – Results 2

• Running time
 • Dataset: 1K, 2K, 4K, 8K, 16K DEMs
 • Hardware: two 8-core Xeon E5, Tesla K20Xm

• Speedup
 • OpenMP: 13—16
 • CUDA: 6—35
ODETLAP – Overview

- **Overdetermined** Laplacian Partial Differential Equations
- Two components: interpolation and lossy compression

(Franklin et al. CUDA-accelerated HDODETLAP: Lossy high dimensional gridded data compression. *Modern Accelerator Technologies for Geographic Information Science*, 2013.)
ODETLAP – Interpolation

• Two types of equations
 • Given a domain $m \times n$ and known points $\{(x_i, y_i, v_i)\}_k$
 • Averaging equation

 $$4z(x, y) - z(x - 1, y) - z(x + 1, y) - z(x, y - 1) - z(x, y + 1) = 0$$
 • Smoothing factor R

 $$4Rz(x, y) - Rz(\ldots) - Rz(\ldots) - Rz(\ldots) - Rz(\ldots) = 0$$
 • Known-value equation

 $$z(x_i, y_i) = v_i$$

• Overdetermined system

 $$A_{(mn+k)\times mn}x = b$$

 $$A^T A x = A^T b$$
ODETLAP –
Lossy compression

• ODETLAP-based compression
 1. Select a set of initial points P using TIN construction
 2. Interpolate P using ODETLAP
 3. While stop condition is not satisfied
 4. Add a number of important points to P
 5. Interpolate P using ODETLAP
ODETLAP – Advantages over PDE

• Advantages
 • ODETLAP is overdetermined
 • ODETLAP can infer local extrema
 • Result is smoother across known points
 • R trades off accuracy vs. smoothness
ODETLAP – Application 1

ODETLAP – Application 2

- Li et al. 3D oceanographic data compression using 3D-ODETLAP. *SIGSPATIAL Special*, 2010

360 × 180 × 24 × 12 (× 4)
Bathymetry interpolation –
A special case

- Data and image courtesy of Peter Traykovski at Woods Hole Oceanographic Institution
Bathymetry interpolation – Common methods

(a) Nearest neighbor interpolation

(b) Natural neighbor interpolation

(c) Inverse distance weighting

(d) Linear interpolation

(e) ODETLAP $R = 10$

(f) ODETLAP $R = 0.1$
Bathymetry interpolation – Proposed method 1

- Computing intermediate tracklines
Bathymetry interpolation – Proposed method 1

• Results
Bathymetry interpolation – Proposed method 2

- Sequence alignment

```
G A A T T C A G T T A
| | | | | | | | | | |
G G A _ T C _ G _ _ A
0 1 0 2 0 0 2 0 2 2 0

A A A A A A A A A A
| | | | / | | | | / \ |
B B B B B B B B B B

A A A A A A A A A A
| | | | | | | | | | |
```
Bathymetry interpolation – Proposed method 2

• Results
GPU-accelerated ODETLAP – Cusp

• Cusp: a parallel sparse matrix library
 • Based on Thrust: a parallel algorithms library
 • Matrix formats
 • BLAS
 • Iterative solvers: relaxation methods and Krylov subspace methods
 • Preconditioners
GPU-accelerated ODETLAP – Implementation

• ODETLAP interpolation
 • Part 1: building A and b on CPU
 • Part 2: calculating A^T, $A^T A$ and $A^T b$
 • Part 3: solving $A^T A x = A^T b$

• Data
 • N43W072, 1200 \times 1200
 • 1% (14400) random points
GPU-accelerated ODETLAP – Sparse matrix formats

- Sparse matrix formats
 - Coordinate matrix format (COO)
 - Compressed Sparse Row matrix format (CSR)
 - ELLPACK/ITPACK matrix format (ELL)
 - Hybrid ELL/COO matrix format (HYB)

- Evaluation
 - Host A, device A and A^T: COO; varying device $A^T A$
 - Solver: Conjugate Gradient (CG) method

<table>
<thead>
<tr>
<th></th>
<th>COO</th>
<th>CSR</th>
<th>ELL</th>
<th>HYB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part 1</td>
<td>0.1 s</td>
<td>0.1 s</td>
<td>0.1 s</td>
<td>0.1 s</td>
</tr>
<tr>
<td>Part 2</td>
<td>0.3 s</td>
<td>0.3 s</td>
<td>0.3 s</td>
<td>0.3 s</td>
</tr>
<tr>
<td>Part 3</td>
<td>20.6 s</td>
<td>19.5 s</td>
<td>10.2 s</td>
<td>10.2 s</td>
</tr>
<tr>
<td>Memory</td>
<td>493 MB</td>
<td>428 MB</td>
<td>422 MB</td>
<td>422 MB</td>
</tr>
</tbody>
</table>
GPU-accelerated ODETLAP – Iterative solvers

• Relaxation methods
 • Gauss-Seidel and SOR: very slow
 • Jacobi: diverged

• Krylov subspace methods
 • BiCGstab and CR: diverged
 • GMRES: slow
 • BiCG and CG

<table>
<thead>
<tr>
<th></th>
<th>BiCG</th>
<th>CG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part 1</td>
<td>0.1 s</td>
<td>0.1 s</td>
</tr>
<tr>
<td>Part 2</td>
<td>0.3 s</td>
<td>0.3 s</td>
</tr>
<tr>
<td>Part 3</td>
<td>16.3 s</td>
<td>10.2 s</td>
</tr>
<tr>
<td>Memory</td>
<td>422 MB</td>
<td>422 MB</td>
</tr>
</tbody>
</table>
GPU-accelerated ODETLAP – Preconditioners

• Preconditioners
 • Smoothed aggregation preconditioner
 • Approximate Inverse (AINV) preconditioner
 • Diagonal preconditioner

• ELL matrix format and CG solver

<table>
<thead>
<tr>
<th></th>
<th>Smoothed aggregation</th>
<th>AINV</th>
<th>Diagonal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part 1</td>
<td>0.1 s</td>
<td>0.1 s</td>
<td>0.1 s</td>
</tr>
<tr>
<td>Part 2</td>
<td>0.3 s</td>
<td>0.3 s</td>
<td>0.3 s</td>
</tr>
<tr>
<td>Part 3</td>
<td>4.7 s</td>
<td>12.0 s</td>
<td>10.4 s</td>
</tr>
<tr>
<td>Memory</td>
<td>730 MB</td>
<td>533 MB</td>
<td>428 MB</td>
</tr>
</tbody>
</table>

Memory

730 MB

533 MB

428 MB
GPU-accelerated ODETLAP – Speedup

• Single-thread CPU
 • Storing A, A^T, and $A^T A$ on host

<table>
<thead>
<tr>
<th>Part 1</th>
<th>CPU</th>
<th>GPU</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part 2</td>
<td>0.0 s</td>
<td>0.1 s</td>
<td>0.6</td>
</tr>
<tr>
<td>Part 2</td>
<td>0.9 s</td>
<td>0.3 s</td>
<td>2.9</td>
</tr>
<tr>
<td>Part 3</td>
<td>37.8 s</td>
<td>4.7 s</td>
<td>8.1</td>
</tr>
</tbody>
</table>
\[4Rz(x, y) - Rz(...) - Rz(...) - Rz(...) - Rz(...) = 0 \]
\[z(x_i, y_i) = v_i \]