USING RATIONAL NUMBERS AND PARALLEL COMPUTING TO EFFICIENTLY AVOID ROUND-OFF ERRORS ON MAP SIMPLIFICATION

Maurício G. Gruppi1
Salles V. G. de Magalhães1,2
Marcus V. A. Andrade1
W. Randolph Franklin2
Wenli Li2

1Departamento de Informática - Universidade Federal de Viçosa
2Rensselaer Polytechnic Institute - USA
1. Introduction
 · What is Map Simplification?
 · Topological Consistency

2. Related Works
 · Simplification Algorithms
 · Round-off Errors in Floating-point Arithmetic

3. Round-off Errors on Map Simplification

4. The EPLSimp Method

5. Experimental Evaluation

6. Conclusions
INTRODUCTION
What is Map Simplification?

- It’s the process of reducing the amount of detail of a map.
- Such as reducing the number of vertices of a **polygonal chain** when altering scale.
- However, there are key features that must be preserved.
(a) shows an example of input set. A **topologically consistent** simplification of (a) is shown in (b).
(b) shows a **topologically inconsistent** simplification of (a).
RELATED WORKS
Ramer-Douglas-Peucker’s Algorithm (RDP)
[Douglas and Peucker, 1973][Ramer, 1972]

- Simplification by *selection*.
- May produce inconsistency.
 - [Saalfeld, 1999]
 - [Li et al., 2013]
Visvalingam-Whyatt’s Algorithm (VW) [Visvalingam and Whyatt, 1993]

- Simplification by elimination.
- Ranks points by effective area.
- Removes points whose effective area is smaller than a given threshold.
Simplification Algorithms

VW’s Algorithm

Calculated every point's effective area in L. Find the point p with the smallest effective area. Remove p from L and calculate the new effective area for p's neighbors.
VW’s Algorithm

- Calculates every point’s effective area in \(L \).
- **Definition:** The effective area of a polyline vertex \(v_i \) is the area of the triangle formed by \(v_{i-1}, v_i \) and \(v_{i+1} \).
VW’s Algorithm

- Calculates every point’s effective area in L.
- Find the point p with smallest effective area.
VW’s Algorithm

- Calculates every point’s *effective area* in L.
- Find the point p with smallest effective area.
- Remove p from L.
VW’s Algorithm

- Calculates every point’s *effective area* in L.
- Find the point p with smallest effective area.
- Remove p from L.
- Calculate the new effective area for p’s neighbors.
VW’s algorithm can produce topologically inconsistent results.
VW’s Algorithm

- Input: 2 polygonal chains (black and red).
VW’s Algorithm

- Input: 2 polygonal chains (black and red).
- Remove d from L.
VW’s Algorithm

- Input: 2 polygonal chains (black and red).
- Remove d from L.
- An intersection has been created between both lines.
TopoVW [Gruppi et al., 2015]

- Ranks points by effective area.
- Checks for points inside each p’s triangle.
- Removes p if there is none.
- Stops when a certain number of points have been removed.
Round-off Errors in Floating Point Arithmetic

- Algorithms previously mentioned were designed for floating-point arithmetic.
- Arbitrary precision numbers represented as fixed precision numbers.
- May incur round-off errors.
- Therefore producing wrong results.
Round-off errors affect planar orientation predicate [Kettner et al., 2008].

The problem of finding whether three points p, q, r:

- are collinear.
- make a left-turn.
- make a right-turn.
Round-off errors affect planar orientation predicate [Kettner et al., 2008].

The problem of finding whether three points p, q, r:

- are collinear.
- make a left-turn.
- make a right-turn.
Round-off errors affect planar orientation predicate [Kettner et al., 2008].

The problem of finding whether three points p, q, r:

- are collinear.
- make a left-turn.
- make a right-turn.
Round-off errors affect planar orientation predicate [Kettner et al., 2008].

The problem of finding whether three points p, q, r:

- are collinear.
- make a left-turn.
- make a right-turn.
Round-off Errors In Floating Point Arithmetic

\[
\text{orientation} = \text{sign} \begin{vmatrix}
1 & p_x & p_y \\
1 & q_x & q_y \\
1 & r_x & r_y
\end{vmatrix}
\]
Round-off Errors In Floating Point Arithmetic

\[
\text{orientation} = \text{sign} \left(\begin{vmatrix} 1 & p_x & p_y \\ 1 & q_x & q_y \\ 1 & r_x & r_y \end{vmatrix} \right)
\]

Sign:
- +: left turn.
- -: right turn.
- 0: collinear.
Round-off Errors In Floating Point Arithmetic

$$\text{orientation} = \text{sign} \left(\begin{vmatrix} 1 & p_x & p_y \\ 1 & q_x & q_y \\ 1 & r_x & r_y \end{vmatrix} \right)$$

Sign:
- +: left turn.
- -: right turn.
- 0: collinear.

Possible problems:
- rounding to zero.
- perturbed zero.
- sign-inversion.
Result of the planar orientation problem using floating-point arithmetic. Source: [Kettner et al., 2008].
ROUND-OFF ERRORS ON MAP SIMPLIFICATION
We have tested floating-point round-off errors on map simplification:

- We needed to determine whether \(p \) is inside triangle \(T \) formed by \((r, s, t) \).
- This was done by using \textit{barycentric coordinates} of \(p \) in \(T \).
Let a, b and c be scalars such that:

- $p_x = ar_x + bs_x + cr_x$
- $p_y = ar_y + bs_y + cr_y$
- $a + b + c = 1$

p lies inside T if and only if $0 \leq a, b, c \leq 1$
· A function is_inside(r, s, t, p) was implemented in C++ using floating-point numbers.
· A function \textit{is_inside}(r, s, t, p) was implemented in C++ using floating-point numbers.

· \textit{false inside}: outer point said inside.
• A function \textit{is_inside}(r, s, t, p) was implemented in C++ using floating-point numbers.

• \textit{false inside}: outer point said inside.

• \textit{May prevent simplification}.
A function $is_{\text{inside}}(r, s, t, p)$ was implemented in C++ using floating-point numbers.

- **false inside**: outer point said inside.
- **false outside**: inner point said outside.
A function \textit{is_inside}(r, s, t, p) was implemented in C++ using floating-point numbers.

- \textit{false inside}: outer point said inside.
- \textit{false outside}: inner point said outside.
- May create improper intersections and self-intersections.
p was a false outside. Thus the removal of q was possible, creating self-intersections.
Solution to Round-off Errors

- ϵ-tweaking
- Snap-rounding
- Exact Arithmetic
\(\epsilon \)-tweaking uses a tolerance value when comparing two numbers:

\[
x = y, \text{ if } |x - y| \leq \epsilon.
\]

- Automatically activates \textit{rounding to zero}.
- Finding \(\epsilon \) is difficult. Especially for big datasets.
Snap-rounding splits the map into pixels (cells). Rounds every endpoint to the center of its bounding pixel.

Figure: (a) before snap-rounding. (b) after snap-rounding. Intersections were introduced.
Exact Arithmetic with Rational Numbers:

- Non-integer variables are represented as arbitrary precision rational numbers.
- Slower than floating-point arithmetic but round-off errors free.
- Overhead can be reduced using parallel computation.
Our Method

- **EPLSimp** uses exact arithmetic for simplifying polylines.
- A uniform-grid structure is used for determining which points needed to be tested for each triangle.
- Parallel computing used for performance.
- Lines are then subdivided into sets that can be simplified in parallel.
Our Method

- Construct a uniform-grid in parallel.
Our Method

- Construct a uniform-grid in parallel.
- Simplify line R.
Our Method

- Construct a uniform-grid in parallel.
- Simplify line R.
- Decrease grid resolution.
- More lines inside single cells.
- Allows parallel simplification.
Our Method

- Simplify line S.
Our Method

- Simplify line S.
- Decrease grid resolution.
Our Method

- Simplify line S.
- Decrease grid resolution.
- Simplify the remaining lines (if any).
EXPERIMENTAL RESULTS
EPLSimp was implemented in C++ using the GMPXX library [Granlund and the GMP development team, 2014].

Artificial datasets were created to evaluate the occurrence of round-off errors.

EPLSimp did not produce any topological inconsistencies.
Table: Times (in ms) for the main steps of the map simplification algorithms. Rows *Max* represent the time for removing the maximum amount of points from the map while rows *Half* represent the time to remove half of the points.

<table>
<thead>
<tr>
<th></th>
<th>Dataset 1</th>
<th>Dataset 2</th>
<th>Dataset 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TopoVW</td>
<td>EPLSimp</td>
<td>TopoVW</td>
</tr>
<tr>
<td>Max.</td>
<td>Initialize</td>
<td>4</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Simplify</td>
<td>39</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>43</td>
<td>82</td>
</tr>
<tr>
<td>Half</td>
<td>Initialize</td>
<td>4</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Simplify</td>
<td>25</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>29</td>
<td>63</td>
</tr>
</tbody>
</table>
Experimental Results - Performance

Table: Times (in ms) for initializing and simplifying maps from the 3 datasets considering different number of threads. The simplification was configured to remove the maximum amount of points from the maps.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Initialization</th>
<th>Simplification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Threads</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>71</td>
<td>655</td>
</tr>
<tr>
<td>2</td>
<td>91</td>
<td>568</td>
</tr>
<tr>
<td>4</td>
<td>54</td>
<td>422</td>
</tr>
<tr>
<td>8</td>
<td>34</td>
<td>240</td>
</tr>
<tr>
<td>16</td>
<td>22</td>
<td>190</td>
</tr>
</tbody>
</table>
Conclusions

∙ We were able to avoid round-off errors using exact arithmetic with rational numbers.
∙ Parallel computing helped alleviating the overhead, approaching floating-point’s processing time.
∙ Future works include:
 ∙ Adapting EPLSimp for simplifying vector drawings and 3D objects.
 ∙ Use exact arithmetic for other GIS algorithms.
Thank You

mauricio.gruppi@ufv.br
salles@ufv.br
marcus@ufv.br
mail@wrfranklin.org