An efficient map-reduce algorithm for spatio-temporal analysis using Spark
(GIS Cup)

Prof. Dr. W Randolph Franklin, RPI
Salles Viana Gomes de Magalhães, PhD. Student
Wenli Li, PhD. Student
Prof. Dr. Marcus V. A. Andrade, UFV
NYC taxi trip dataset

- NYC Taxi and Limousine Commission (TLC)
- > 1 billion records
- Since 2009

Several CSV files containing:
- Drop-off lat/long/time
- Pick-up lat/long/time
- Number of passengers
- Trip distance
- Fare
- Payment type
- Tolls
- Etc.

Source: http://www.nyc.gov
NYC taxi trip dataset

• Big amount of information → many possibilities of analysis

• Example:
 • What is the average price of trips from JFK to LGA?
 • Is the most used type of payment different for different neighborhoods/days/hours?
 • What is the most frequent destination from Penn Station?
 • Hotspots for full taxis?

• Some interesting observations (2015 dataset).
 • Most frequent fare: $7.80 (3,804,101 times)
 • 195 trips cost more than $1,000 (noise?)
 • # trips costing (0,$1] : 35,893
 • Average # of passengers per trip: 1.6

Source: http://www.nyc.gov
NYC taxi trip dataset

- Has some errors.

<table>
<thead>
<tr>
<th>Pickup time</th>
<th>Drop-off time</th>
<th>Dist. (miles)</th>
<th>Pickup long.</th>
<th>Pickup lat.</th>
<th>Fare (USD)</th>
<th>Tip (USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>03/29/2015 00:14:32</td>
<td>03/29/2015 00:28:41</td>
<td>1030</td>
<td>0.0000</td>
<td>0.0000</td>
<td>4800.21</td>
<td>0</td>
</tr>
<tr>
<td>09/20/2015 21:50:26</td>
<td>09/20/2015 21:52:57</td>
<td>1.2</td>
<td>0.0000</td>
<td>0.0000</td>
<td>8004.5</td>
<td>1200.8</td>
</tr>
<tr>
<td>11/25/2015 08:24:50</td>
<td>11/25/2015 08:51:53</td>
<td>7.5</td>
<td>-73.8705</td>
<td>40.7736</td>
<td>93977.3</td>
<td>0</td>
</tr>
<tr>
<td>12/27/2015 03:45:54</td>
<td>12/27/2015 03:45:54</td>
<td>0</td>
<td>-73.9289</td>
<td>40.7061</td>
<td>825998.61</td>
<td>0</td>
</tr>
<tr>
<td>01/18/2015 19:24:15</td>
<td>01/18/2015 19:51:55</td>
<td>5.3</td>
<td>-74.0021</td>
<td>40.7395</td>
<td>22</td>
<td>3950588.8</td>
</tr>
</tbody>
</table>
GISCUP 2016

- Given the 2015 dataset → what are the top 50 spatio-temporal hotspots?
- Consider the number of passengers being dropped-off.
- Clip the dataset to eliminate noise; consider only the 5 boroughs – remove dropoffs in the Atlantic Ocean.
- Filter drop-offs that happened in 2015. (e.g. remove New Years' Eve)

Source: GISCUP 2016
Hot-spot analysis

- Filtering bounding-box (5 boroughs, only 2015) → spatio-temporal cube.
- Aggregation: cell i → compute c_i (# passengers dropped-off)
- We can optionally always assume that $c_i = 1$.
- Compute the Getis-Ord G_i^* statistic.
- It’s a z-score measure of statistical significance.

$$G_i^* = \frac{\sum_{j=1}^{n} w_{i,j} c_j - \bar{c} \sum_{j=1}^{n} w_{i,j}}{S \sqrt{\frac{n \sum_{j=1}^{n} w_{i,j}^2 - (\sum_{j=1}^{n} w_{i,j})^2}{n-1}}}$$

$$\bar{c} = \frac{\sum_{i=1}^{n} c_i}{n}$$

$$S = \sqrt{\frac{\sum_{i=1}^{n} c_i^2}{n} - \bar{c}^2}$$
Map-reduce history

- **Map-reduce**: Functional Programming (FP) concept.
- FP applies nested functions to sets of data.

- **Reduction**: component of high level languages at least since the APL language, proposed in 1957, operated on vectors and arrays.
- Implemented by IBM in 1965, widely used for some years.

- Thinking Machines CM-2 (Connection Machine 2) implemented hardware reduction in 1990.

- Map-reduce is implemented well in parallel libraries like OpenMP and CUDA/Thrust.
Parallelism

- Serial processors have scarcely gotten faster in 5 years.
- It’s a physics problem; must go parallel.
- Or use more efficient algorithms, or make a fundamental discovery.

- Communication dominates computation: keep the data close.

1st choice: large amounts of memory (2TB workstations exist).

- Plus multicore Intel Xeon CPUs. \textit{(I have a dual 14-core machine)}.

2nd choice: Nvidia GPUs
- 1000s of slow CUDA cores. (20 CUDA cores = 1 Xeon core).
- Very complicated programming.

3rd choice: more distributed systems.
Hot-spot analysis

- \(w_{ij} \): 1 for neighbor cells, 0 for other pairs
- Interior cells: 26+1 neighbors; border cells: 8, 12, or 18.
- Let \(v_i \) be the number of neighbors of \(i \).
- We can optionally always use \(v_i = 27 \).
- Let the sum of neighbors be
 \[
 \sigma_i = \sum_{j=1}^{n} w_{i,j} c_j
 \]
- Computing that is by far the hardest step.
- Then
 \[
 G_i^* = \frac{\sigma_i - \bar{c} v_i}{S \sqrt{\frac{n v_i - v_i^2}{n-1}}}
 \]
Computing the “sum of neighbors”

- Simple map-reduce algorithm
 - First step:
 1. Read files from HDFS and create a pair RDD: \(((t,x,y),\text{drop-off})\)
 2. Reduce by key
 3. Now: \{((t,x,y) , c)\}
 4. Compute statistics
 - Second step (sum of neighbors):
 1. Each cell \((t,x,y) , c\) → \{((t+d_t,x+d_x,y+d_y) , c), d_t,d_x,d_y = -1..1\}
 2. Reduce by key
 3. Now: \{((t,x,y) , \sigma)\}
 - Third step:
 1. Compute \(G_i^*\) using \(\sigma/\text{statistics}\)
 2. Get top cells
- Implemented in Java+Spark
Optimizing the coordinate representation

Optimization:

• Java Tuple3<Integer,Integer,Integer> (generic class) internally uses three pointers to reference the integers.

• Big overhead for a class that simply stores three integers.

• Customized classes avoid pointers.

• Therefore we create a custom class with 3 integers
Optimizing the coordinate representation

Optimization:

- Represent “small coordinate tuple” as a single integer.
 \[(t,x,y) \rightarrow t \times (1+\text{MAX}_y) \times (1+\text{MAX}_x) + y \times (1+\text{MAX}_x) + x\]
- Easily handles 2G cells (4G would be possible).
- *Note that ARCGIS space-time cubes have same limitation.*
- Saves memory and I/O.
- Faster comparison/hashing.
- We also implement the general and slow data structure in case the user wants over 2G cells.
Computing the “sum of neighbors”

- Reading and parsing is the slowest step.
 - Use a custom parser (up to 2x speedup)
 - Recommendation: store the data in binary, not CSV.

- Spark configuration:
 - Kryo serializer
 - Convert between internal Java object and byte stream for file.
 - Many systems use it.
 - It trades security for speed, but that’s ok here.
 - Hash shuffler
 - To get the data from the mapper to the reducer.
 - Various shufflers are available.
Computing the “sum of neighbors”

• Most important optimization:
 • create an RDD with 27 times # of cells
 • Each cell ((t,x,y) , c) → \{ ((t+d_{t}, x+d_{x}, y+d_{y}) , c) , d_{t},d_{x},d_{y} = -1..1 \}

• Before: element type stored in the RDD is a cell
• Now: each element is a partition of the space-time cube.

• From: (0,0),2;(1,0),4;(2,0),2;(3,0),1;(4,0),9;(5,0),4;(1,0),1; ...
• To:

\[
\begin{array}{cccc}
9 & 3 & 8 \\
1 & 2 & 4 \\
2 & 4 & 2 \\
\end{array} \quad \begin{array}{cccc}
7 & 2 & 1 \\
2 & 7 & 7 \\
1 & 9 & 4 \\
\end{array} \quad \begin{array}{cccc}
3 & 2 & 7 \\
2 & 1 & 3 \\
4 & 5 & 4 \\
\end{array} \quad \begin{array}{cccc}
8 & 1 & 7 \\
9 & 9 & 3 \\
1 & 1 & 0 \\
\end{array}
\]
Computing the “sum of neighbors”

- Improved solution:
 - More locality:
 - Sum of neighbors: for loop to add elements
 - Cells in boundary: special case (separate list and aggregate)
 - Fewer (but larger) elements:
 - Less overhead (implicit coordinates)

\[
\begin{array}{cccc}
3 & 2 & 7 & 8 & 1 & 7 \\
2 & 1 & 3 & 9 & 9 & 3 \\
4 & 5 & 4 & 1 & 1 & 0 \\
9 & 3 & 8 & 7 & 2 & 1 \\
1 & 2 & 4 & 2 & 7 & 7 \\
2 & 4 & 2 & 1 & 9 & 4 \\
\end{array}
\]

\((0,0), 2;(1,0), 4;(2,0), 2;(3,0), 1;(4,0), 9;(5,0), 4;(1,0), 1; \ldots\)
Failed idea: sample the data

Before settling on the previous algorithm, we tested several other ideas, but they were bad.

Failed idea: sample the data.

- Sampling large datasets is a common operation in statistics.
- Relative error falls with $\sqrt{\text{sample size}}$.
- So: Compute the hot spots for only some of the data.
- However: the list of hot spots changes.
- Fail.
Failed idea: allocate complete array of counts

• Failed idea: Instead of storing ((t,x,y), count) tuples, allocate a complete array to store the counts.

• However most of the array would be 0.

• This would take more space (= more time).
Perhaps a cell with high G_i^* will itself have many events.

That is, regions of many events are several cells wide.

So, count number of events for all cells.

Pick the top 1000 cells.

Count neighbors and compute G_i^* for only them.

However, this doesn’t always work.

Some cells are like a donut hole.

Plot: 2015 top 50, res: 0.001°, 1 day.
Experiments

• Amazon EC2
 • 25x (1+24) m2.2xlarge
 • 4 CPUs
 • 34.2 GB of RAM
 • 850 GB rotational hard drive
 • 2015 dataset (stored in HDFS)

• Algorithms/improvements:
 • Simple algorithm
 • K: Kryo serializer
 • H: Hash shuffler
 • C: Compressed coordinates
 • CP: Cube partitioning
Experiments

<table>
<thead>
<tr>
<th>Spat. size</th>
<th>Time size</th>
<th>Algorithm</th>
<th>Simple</th>
<th>K+H</th>
<th>K+H+C</th>
<th>K+H+CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>30</td>
<td></td>
<td>18</td>
<td>20</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>0.01</td>
<td>7</td>
<td></td>
<td>18</td>
<td>20</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>0.01</td>
<td>1</td>
<td></td>
<td>26</td>
<td>20</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>0.001</td>
<td>30</td>
<td></td>
<td>20</td>
<td>20</td>
<td>19</td>
<td>25</td>
</tr>
<tr>
<td>0.001</td>
<td>7</td>
<td></td>
<td>27</td>
<td>23</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>0.001</td>
<td>1</td>
<td></td>
<td>37</td>
<td>27</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>0.0003</td>
<td>30</td>
<td></td>
<td>39</td>
<td>27</td>
<td>22</td>
<td>28</td>
</tr>
<tr>
<td>0.0003</td>
<td>7</td>
<td></td>
<td>65</td>
<td>42</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>0.0003</td>
<td>1</td>
<td></td>
<td>114</td>
<td>70</td>
<td>51</td>
<td>33</td>
</tr>
<tr>
<td>0.0001</td>
<td>30</td>
<td></td>
<td>84</td>
<td>61</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>0.0001</td>
<td>7</td>
<td></td>
<td>321</td>
<td>212</td>
<td>49</td>
<td>27</td>
</tr>
<tr>
<td>0.0001</td>
<td>1</td>
<td></td>
<td>675</td>
<td>455</td>
<td>-</td>
<td>33</td>
</tr>
<tr>
<td>0.00005</td>
<td>30</td>
<td></td>
<td>229</td>
<td>147</td>
<td>45</td>
<td>28</td>
</tr>
<tr>
<td>0.00005</td>
<td>7</td>
<td></td>
<td>1102</td>
<td>712</td>
<td>-</td>
<td>31</td>
</tr>
<tr>
<td>0.00005</td>
<td>1</td>
<td></td>
<td>1921</td>
<td>1318</td>
<td>-</td>
<td>37</td>
</tr>
</tbody>
</table>
Experiments

- 0.0001°→ ~ 8m x 11m
- 0.0001°, 1 day→Bounding-box with: 4000 x 5500 x 365 - 8G cells!
- ~146 million trips in 2015
- ~144 million filtered events (bounding-box)
- → 0.02 trips per cell, 0.03 drop-offs/cell

Hotspots:
- long, lat, days from 1/1/2015, z-score, sum_neighbors
- -73.9913,40.7501,352,1427.6,4207
- -73.9913,40.7501,353,1413.1,4164
- -73.9912,40.7502,114,1324.5,3903
- -74.0001,40.7585,11,1323.1,3899
- -73.9913,40.7501,114,1314.3,3873
- -74.0000,40.7586,11,1311.9,3866
- -73.9913,40.7502,352,1307.2,3852
- -73.9912,40.7502,93,1306.8,3851
- -73.9912,40.7502,353,1305.8,3848
- -73.9913,40.7501,354,1303.8,3842
Conclusions

• Spark Map-Reduce:
 • Simple to implement
 • Can achieve good performance

• Best optimizations:
 • Compact coordinates
 • Cube partitioning

 Up to 52x faster than simplest algorithm
An efficient map-reduce algorithm for spatio-temporal analysis using Spark

\[G^*_i = \frac{\sigma_i - \bar{c}_\nu_i}{S \sqrt{n\nu_i - \nu_i^2/n-1}} \]

<table>
<thead>
<tr>
<th>Spat. size</th>
<th>Time size</th>
<th>Simple</th>
<th>K+H</th>
<th>K+H+C</th>
<th>K+H+CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>30</td>
<td>18</td>
<td>20</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>0.01</td>
<td>7</td>
<td>18</td>
<td>20</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>0.01</td>
<td>1</td>
<td>26</td>
<td>20</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>0.001</td>
<td>30</td>
<td>20</td>
<td>20</td>
<td>19</td>
<td>25</td>
</tr>
<tr>
<td>0.001</td>
<td>7</td>
<td>27</td>
<td>23</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>0.001</td>
<td>1</td>
<td>37</td>
<td>27</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>0.0003</td>
<td>30</td>
<td>39</td>
<td>27</td>
<td>22</td>
<td>28</td>
</tr>
<tr>
<td>0.0003</td>
<td>7</td>
<td>65</td>
<td>42</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>0.0003</td>
<td>1</td>
<td>114</td>
<td>70</td>
<td>51</td>
<td>33</td>
</tr>
<tr>
<td>0.0003</td>
<td>30</td>
<td>84</td>
<td>61</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>0.0001</td>
<td>7</td>
<td>321</td>
<td>212</td>
<td>49</td>
<td>27</td>
</tr>
<tr>
<td>0.0001</td>
<td>1</td>
<td>675</td>
<td>455</td>
<td>-</td>
<td>33</td>
</tr>
<tr>
<td>0.00005</td>
<td>30</td>
<td>229</td>
<td>147</td>
<td>45</td>
<td>28</td>
</tr>
<tr>
<td>0.00005</td>
<td>7</td>
<td>1102</td>
<td>712</td>
<td>-</td>
<td>31</td>
</tr>
<tr>
<td>0.00005</td>
<td>1</td>
<td>1921</td>
<td>1318</td>
<td>-</td>
<td>37</td>
</tr>
</tbody>
</table>

(0,0), 2; (1,0), 4; (2,0), 2; (3,0), 1; (4,0), 9; (5,0), 4; (1,0), 1; ...

(0,0), \begin{array}{ccc} 9 & 3 & 8 \\ 1 & 2 & 4 \\ 2 & 4 & 2 \end{array}; (1,0), \begin{array}{ccc} 7 & 2 & 1 \\ 2 & 7 & 7 \\ 1 & 9 & 4 \end{array}; (0,1), \begin{array}{ccc} 3 & 2 & 7 \\ 2 & 1 & 3 \\ 4 & 5 & 4 \end{array}; (1,1), \begin{array}{ccc} 8 & 1 & 7 \\ 9 & 9 & 3 \\ 1 & 1 & 0 \end{array}

Acknowledgement:

Contact:
Salles Viana Gomes de Magalhães, vianas2@rpi.edu
W Randolph Franklin, mail@wrfranklin.org
Wenli Li, liw9@rpi.edu
Marcus V. A. Andrade, marcus@ufv.br