Which pairs intersect?
Abstract

- Parallelization of a 3d application (intersection detection).
- Good (uniform grid, radix sort) vs bad (octree, recursion) data structures.
- The good parallel algorithm is also a good sequential one.
- Functional programming via Thrust is a useful abstraction level.
- Challenge: expressing the algorithm using those primitives.
- Capability of inexpensive HW (neither MPI nor BG nor Spark nor cloud).
- Up to 130× faster than CGAL (Computational Geometry Algorithms Library).
Prior art

- Zomorodian and Edelsbrunner
 - uses segment and range trees to find 1D intersections.
 - 3 1D intersections are necessary (but not sufficient) for 3D intersection.
 - very efficient in practice, though adversarial inputs exist.
 - not parallelizable.
 - used in CGAL.

- PBIG
 - parallelizes with CUDA
 - uniform grid
 - complex CUDA-specific optimizations, compression
 - very fast, parallelizable.

- ParCube (this talk)
 - as fast or faster than PBIG.
 - simpler.
 - higher level abstraction, not restricted to CUDA.
Parallel good; massive better(?)

- Almost all processors, even my smart phone, are parallel.
- Algorithms that don’t parallelize are obsolete.
- Nvidia GPUs are almost ubiquitous.
- Thousands of cores execute SIMT in warps of 32 threads.
- Hierarchy of memory: small/fast \rightarrow big/slow
- Communication cost \gg computation cost

Massive: IBM Blue Gene, Hadoop, Spark, cloud.

- Each processor has little memory.
- MPI, expensive communication.
- If you need it, then you need it.

However you can do a lot on one server or one GPU.
Thrust

- C++ template library for CUDA based on STL.
- Functional paradigm: algorithms easier to express.
- Hides many CUDA details: good and bad.
- Powerful operators all parallelize: scatter/gather, reduction, reduction by key, permutation, transform iterator, zip iterator, sort, prefix sum.
- Surprisingly efficient algorithms like bucket sort, runlength encode/decode.
- Execution cost relative to CUDA: perhaps factor of 3.
- Many possible back ends (just recompile):
 - GPU: CUDA,
 - CPU: OpenMP, TBB, sequential.
Uniform grid

Summary

▶ Overlay a uniform 3D grid on the universe.
▶ Find cells overlapping each input primitive.
▶ In each cell, store set of overlapping primitives.

Properties

▶ Simple, sparse, uses little memory if well programmed.
▶ Parallelizable.
▶ Robust against data nonuniformities.
▶ Bad worst-case performance on adversarial data.
 ▶ As do octree and all hierarchical methods.

How it works to find intersections

▶ Intersecting primitives must occupy the same cell.
▶ The grid filters the set of possible intersections.
Uniform Grid Qualities

- **Major disadvantage:** It’s so simple that it apparently cannot work, especially for nonuniform data.

- **Major advantage:** For the operations I want to do (intersection, containment, etc), it works very well for any real data I’ve ever tried.

- **Outside validation:** used in our 2nd place finish in November’s ACM SIGSPATIAL GIS Cup award.

USGS Digital Line Graph; VLSI Design; CFD Mesh
Uniform Grid Time Analysis

For i.i.d. edges (line segments) in E^2, the time to find edge–edge intersections is linear in size (input+output) regardless of varying number of edges per cell.

- N edges, length $1/L$, $G \times G$ grid.
- Expected # intersections $= \Theta \left(\frac{N^2}{L^2} \right)$.
- Each edge overlaps $\leq 2\frac{G}{L} + 1$ cells.
- $\eta \overset{\Delta}{=} # \text{ edges per cell, is Poisson}; \bar{\eta} = \Theta \left(\frac{N}{G^2} \left(2\frac{G}{L} + 1 \right) \right)$.
- Expected total # xsect tests: $G^2\bar{\eta}^2 = \Theta \left(\frac{N^2}{G^2} \left(2\frac{G}{L} + 1 \right)^2 \right)$.
- Total time: insert edges into cells + test for intersections.
 $T = \Theta \left(N(2\frac{G}{L} + 1) + \frac{N^2}{G^2} \left(2\frac{G}{L} + 1 \right)^2 \right)$.
- Minimized when $G = \Theta(L)$, giving $T = \Theta \left(N + \frac{N^2}{L^2} \right)$.
- Time $= \Theta \left(\text{size of input + size of output} \right)$. ■
ParCube: Find pairwise cube intersections

- Necessary function in
 - collision detection
 - complex boolean operations
 - near point detection
- 3D is harder than 2D. (Sweep planes?!)
- Using $N=10^7$ cuts out the toy algorithms,
- Output sensitive algorithm required.
- Easy extension to bipartite (red-blue) intersection detection, which would cause trouble for sweep lines.
ParCube algorithm summary

- I use specific numbers here for clarity.
- Input: 10^7 cubes, length 0.0025.
- Every step parallelizes.
- Overlay a 400x400x400 grid; cells slightly larger than cubes.
- Compute array of (cell,cube) pairs; $8 \cdot 10^7$ pairs.
- Sort to form ragged array of cubes in each cell.
- Compute array of (cube, cube) pairs from all pairs of cubes in each cell.
- Total: 10^8 potentially intersecting pairs.
- Test pairs for actual intersection; find $6 \cdot 10^6$.
- Time from when array of input cubes is in computer to when have list of intersecting pairs.
- On Nvidia GeForce Titan X GPU: 0.33 elapsed seconds.
- 131x faster than CGAL.
- Asymptotic time is output sensitive: linear in output size.
Computing (cell, cube) array

- Determine, parallely, the cells that each cube overlaps.
- Store all those pairs in one array.
- Could use a global atomic read-increment-store counter pointing to the latest pair in the array.
- That’s very slow and doesn’t scale well.
- Instead: precompute where each pair will go.
- Then can store the pairs parallely.
- Given the choice of grid size, each cube overlaps 8 cells (or, rarely, fewer).
- Precomputing each pair’s location is easy.
- Pair \#j from cube \#i is global pair 8i+j.
- Lower-bound function on cube ids computes dope vector.
- Reduce-by-key function computes number of cubes in each cell (which varies from cell to cell).
- Can find j-th cube of i-th cell in constant time.
Computing (cube, cube) array parallelly

- This is harder because different cells have a different number of (cube,cube) pairs that might intersect.
- k cubes in a cell $\rightarrow \binom{k}{2}$ pairs in that cell.
- Order combo pairs: $(1,0), (2,0), (2,1), (3,0), (3,1), \ldots$
- Can compute the ids of the two cubes in i-th pair.
- Given a vector with the number of cubes in each cell, map to compute a vector of the number of pairs.
- Scan it to create a dope vector for each cell’s list in the global (cube,cube) array.
- Now, for the i-th entry in the global (cube,cube) array:
 - Lower-bound computes cell id and pair id ℓ in that cell.
 - from ℓ compute the ids of the two cubes.
- Write the global (cube,cube) array in parallel.
- Filter it testing whether each pair actually intersects.
- Sort and uniquify it, since some pairs were found twice (in different cells).
- Result is an array of all the intersecting cube pairs.
Commentary

- Possible backends: sequential, OpenMP, TBB, CUDA.
- Hardest part: expressing algorithm within restrictions of Thrust, especially storing (cube, cube) pairs.
- Resulting program:
 - Straight line.
 - < 200 lines of code (plus supporting files).
- Even sequential is sometimes 3x faster than CGAL.
- More sophisticated algorithms are slower.
- Sweep lines not so good in 3D.
- ParCube would extend to higher dimensions.
- ParCube not fully optimized; less abstraction might run 3x faster.
Validation

- Separate implementation by different person, using CGAL.
 - Couldn’t get PBIG to work, so used its reported times.
- Hardest part was ensuring intersection test did floating roundoff compatibly with CGAL.
 - \((a + b) - b \neq a\)
- Compared lists of intersecting pairs for sample parameters.
 - Perfect match.
- All our SW is freely available for nonprofit research and education.
 - It is research-quality not commercial-quality.
Experimental performance comparison

Times for 10^7 cubes with different grid (and cube) sizes, comparing CGAL and ParCube (various backends).
Parallel speedup on dual 8-core multicore Intel Xeon

![Graph showing speedup versus threads for OpenMP and TBB methods.]
Smaller datasets are faster

- 100,000 cubes: 0.01 - 0.02 sec (video frame rate)
- 1M cubes: .04 - .1 sec
- 10M cubes: .28 - .5 secs
General lessons, and Future

- You can do a lot on a GPU...
- Including finding multiple-object intersections.
- Even a $700^3 = 343 \cdot 10^6$ cell uniform grid indexing 10^7 cubes works.
- Simple regular algorithms work very well and parallelize.
- Should extend to other Geometry and CAD problems.
- Would be applicable to 7D for robot configuration space collisions.
- Now intersecting 3D triangulations with millions of triangles, rational numbers, simulation of simplicity, uniform grid, OpenMP. (talk on Fri).
- Next trying to compute intersecting graded material properties in additive manufacturing.