
CS 193G

Lecture 3: CUDA Threads & Atomics

ATOMICS

The Problem

How do you do global communication?

Finish a grid and start a new one

Global Communication

Finish a kernel and start a new one

All writes from all threads complete before a

kernel finishes

step1<<<grid1,blk1>>>(...);

// The system ensures that all

// writes from step1 complete.

step2<<<grid2,blk2>>>(...);

Global Communication

Would need to decompose kernels into

before and after parts

Race Conditions

Or, write to a predefined memory location

Race condition! Updates can be lost

Race Conditions

threadId:0 threadId:1917

// vector[0] was equal to 0

vector[0] += 5; vector[0] += 1;

... ...

a = vector[0]; a = vector[0];

What is the value of a in thread 0?

What is the value of a in thread 1917?

Race Conditions

Thread 0 could have finished execution

before 1917 started

Or the other way around

Or both are executing at the same time

Race Conditions

Answer: not defined by the programming

model, can be arbitrary

Atomics

CUDA provides atomic operations to deal

with this problem

Atomics

An atomic operation guarantees that only a

single thread has access to a piece of

memory while an operation completes

The name atomic comes from the fact that it

is uninterruptable

No dropped data, but ordering is still

arbitrary

Different types of atomic instructions

atomic{Add, Sub, Exch, Min, Max,

Inc, Dec, CAS, And, Or, Xor}

More types in fermi

Example: Histogram

// Determine frequency of colors in a picture

// colors have already been converted into ints

// Each thread looks at one pixel and increments

// a counter atomically

__global__ void histogram(int* color,

int* buckets)

{

int i = threadIdx.x

+ blockDim.x * blockIdx.x;

int c = colors[i];

atomicAdd(&buckets[c], 1);

}

Example: Workqueue
// For algorithms where the amount of work per item

// is highly non-uniform, it often makes sense for

// to continuously grab work from a queue

__global__

void workq(int* work_q, int* q_counter,

int* output, int queue_max)

{

int i = threadIdx.x

+ blockDim.x * blockIdx.x;

int q_index =

atomicInc(q_counter, queue_max);

int result = do_work(work_q[q_index]);

output[i] = result;

}

Atomics

Atomics are slower than normal load/store

You can have the whole machine queuing

on a single location in memory

Atomics unavailable on G80!

Example: Global Min/Max (Naive)
// If you require the maximum across all threads

// in a grid, you could do it with a single global

// maximum value, but it will be VERY slow

__global__

void global_max(int* values, int* gl_max)

{

int i = threadIdx.x

+ blockDim.x * blockIdx.x;

int val = values[i];

atomicMax(gl_max,val);

}

Example: Global Min/Max (Better)
// introduce intermediate maximum results, so that

// most threads do not try to update the global max

__global__

void global_max(int* values, int* max,

int *regional_maxes,

int num_regions)

{

// i and val as before …

int region = i % num_regions;

if(atomicMax(®_max[region],val) < val)

{

atomicMax(max,val);

}

}

Global Min/Max

Single value causes serial bottleneck

Create hierarchy of values for more

parallelism

Performance will still be slow, so use

judiciously

See next lecture for even better version!

Summary

Can’t use normal load/store for inter-thread

communication because of race conditions

Use atomic instructions for sparse and/or

unpredictable global communication

See next lectures for shared memory and scan

for other communication patterns

Decompose data (very limited use of single

global sum/max/min/etc.) for more

parallelism

Questions?

SM EXECUTION &

DIVERGENCE

How an SM executes threads

Overview of how a Stream Multiprocessor

works

SIMT Execution

Divergence

Scheduling Blocks onto SMs

Thread Block 5

Thread Block 27

Thread Block 61

Streaming Multiprocessor

Thread Block 2001

HW Schedules thread blocks onto available SMs
No guarantee of ordering among thread blocks

HW will schedule thread blocks as soon as a previous

thread block finishes

Warps

ALU

Control

ALU

Control

ALU

Control

ALU

Control

ALU

Control

ALU

Control

ALU ALU ALU

Control

ALU ALU ALU

A warp = 32 threads launched together

Usually, execute together as well

Mapping of Thread Blocks

Each thread block is mapped to one or more

warps

The hardware schedules each warp

independently

Thread Block N (128

threads)

TB N W1

TB N W2

TB N W3

TB N W4

25

Thread Scheduling Example

SM implements zero-overhead warp

scheduling
At any time, only one of the warps is executed by

SM *

Warps whose next instruction has its inputs

ready for consumption are eligible for execution

Eligible Warps are selected for execution on a

prioritized scheduling policy

All threads in a warp execute the same

instruction when selected

TB1

W1

TB = Thread Block, W = Warp

TB2

W1

TB3

W1

TB2

W1

TB1

W1

TB3

W2

TB1

W2

TB1

W3

TB3

W2

Time

TB1, W1 stall
TB3, W2 stallTB2, W1 stall

Instruction: 1 2 3 4 5 6 1 2 1 2 3 41 2 7 8 1 2 1 2 3 4

Control Flow Divergence

What happens if you have the following code?

if(foo(threadIdx.x))

{

do_A();

}

else

{

do_B();

}

Control Flow Divergence

From Fung et al. MICRO ‘07

Branch

Path A

Path B

Branch

Path A

Path B

Control Flow Divergence

Nested branches are handled as well

if(foo(threadIdx.x))

{

if(bar(threadIdx.x))

do_A();

else

do_B();

}

else

do_C();

Control Flow Divergence

BranchBranch

Path A

Path C

Branch

Path B

Control Flow Divergence

You don’t have to worry about divergence

for correctness (*)
You might have to think about it for performance

Depends on your branch conditions

Control Flow Divergence

Performance drops off with the degree of divergence

switch(threadIdx.x % N)

{

case 0:

...

case 1:

...

}

Divergence

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16 18

P
e
rf

o
rm

a
n

c
e

Divergence

Atomics

atomicAdd returns the previous value at a

certain address

Useful for grabbing variable amounts of

data from a list

Questions?

Backup

Compare and Swap

int compare_and_swap(int* register,

int oldval, int newval)

{

int old_reg_val = *register;

if(old_reg_val == oldval)

*register = newval;

return old_reg_val;

}

Compare and Swap

Most general type of atomic

Can emulate all others with CAS

Locks

Use very judiciously

Always include a max_iter in your

spinloop!

Decompose your data and your locks

