CS 193G

Lecture 3: CUDA Threads & Atomics

ATOMICS

The Problem

® How do you do global communication?
® Finish a grid and start a new one

Global Communication

® Finish a kernel and start a new one

® All writes from all threads complete before a
CINEIRIRIIES

stepl<<<gridl ,blkl1>>>(...);
// The system ensures that all
// writes from stepl complete.
step2<<<Kgrid2 ,blk2>>>(...);

Global Communication

® Would need to decompose kernels into
before and after parts

Race Conditions

® Or, write to a predefined memory location
® Race condition! Updates can be lost

Race Conditions

threadId: 0 threadId:1917
// vector[0] was equal to O

vector[0] += 5; vector[0] += 1;

a = vector|[0]; a = vector|[0];

® What is the value of a in thread 0?
® What is the value of a in thread 19177

Race Conditions

® Thread 0 could have finished execution
before 1917 started

® Or the other way around
® or both are executing at the same time

Race Conditions

® Answer: not defined by the programming
model, can be arbitrary

Atomics

® cupa provides atomic operations to deal
with this problem

Atomics

® An atomic operation guarantees that only a
single thread has access to a piece of
memory while an operation completes

® The name atomic comes from the fact that it
IS uninterruptable

® No dropped data, but ordering is still
arbitrary

® Different types of atomic instructions
.atomic{Add, Sub, Exch, Min, Max,
Inc, Dec, CAS, And, Or, Xor}

® More types in fermi

Example: Histogram

// Determine frequency of colors in a picture
// colors have already been converted into ints
// Each thread looks at one pixel and increments

// a counter atomically
__global void histogram(int* color,

int* buckets)

int 1 = threadIdx.x

+ blockDim.x * blockIdx.x;
int ¢ = colors|[1i];
atomicAdd (&buckets[c], 1);

Example: Workqueue

// For algorithms where the amount of work per item
// is highly non-uniform, it often makes sense for

// to continuously grab work from a queue
__global
void workqg(int* work g, int* q counter,

int* output, int queue max)

int i = threadIdx.x
+ blockDim.x * blockIdx.x;
int q index =
atomicInc(q_counter, queue max);
int result = do work(work g[gq index]);

output[i] = result;

Atomics

® Atomics are slower than normal load/store

® You can have the whole machine gueuing
on a single location in memory

® Atomics unavailable on G80!

Example: Global Min/Max (Naive)

// If you require the maximum across all threads
// in a grid, you could do it with a single global
// maximum value, but it will be VERY slow

__global
void global max(int* values, int* gl max)
{
int i1 = threadIdx.x
+ blockDim.x * blockIdx.x;
int val = values|[1i];

atomicMax (gl max,val);

Example: Global Min/Max (Better)

// introduce intermediate maximum results, so that
// most threads do not try to update the global max

__global
void global max(int* values, int* max,
int *regional maxes,

int num regions)

// i and val as before ..

\°

int region = 1 % num regions;
if (atomicMax (® max[region],val) < val)

{

atomicMax (max,val) ;

Global Min/Max

® Single value causes serial bottleneck

® Create hierarchy of values for more
parallelism

® Performance will still be slow, so use
judiciously

® See next lecture for even better version!

Summary

® Can’t use normal load/store for inter-thread
communication because of

® Use atomic instructions for sparse and/or
unpredictable global communication

® See next lectures for shared memory and scan
for other communication patterns

4 Decompose data (very limited use of single
global sum/max/min/etc.) for more
parallelism

Questions?

SM EXECUTION &
DIVERGENCE

How an SM executes threads

® Overview of how a Stream Multiprocessor
WOorks

® S|MT Execution
¢ Divergence

Scheduling Blocks onto SMs

Streaming Multiprocessor

Thread Block 5

Thread Block 27

Thread Block 61

Thread Block 2001

® HW Schedules thread blocks onto available SMs

® No guarantee of ordering among thread blocks

® LW will schedule thread blocks as soon as a previous
thread block finishes

Warps

Control Control Control Control Control Control

Control

®A warp = 32 threads launched together
® Usually, execute together as well

Mapping of Thread Blocks

® cach thread block is mapped to one or more
warps

® The hardware schedules each warp
iIndependently

TB N W1
TB N W2

Thread Block N (128 _>

threads)

TB N W3

TB N W4

Thread Scheduling Example

® swm Implements zero-overhead warp
scheduling
® At any time, only one of the warps is executed by
SM *
® Warps whose next instruction has its inputs
ready for consumption are eligible for execution

® Eligible Warps are selected for execution on a
prioritized scheduling policy

® All threads in a warp execute the same
Instruction when selected

TB1, W1 stall

—T1B2, W1 stal—}———TB3, W2 stall——— |

Instruction:

Control Flow Divergence

® What happens if you have the following code?

1f (foo(threadldx.x))
{
do A();
}
else
{
do B();
}

1
1

1
1

—
—
—
—
—
—
—
—

bbb b

bbb

Control Flow Divergence

2

From Fung et al. MICRO ‘07

Control Flow Divergence

® Nested branches are handled as well

i1f (foo(threadIdx.x))
{
if (bar (threadIdx.x))
do A();
else
do B();
}

else
do C();

— >
—_— -
— —>
— —
— —
— -
— —
— —

—] — —
—

—

—

—] — | —
—] — —
—

—] — | —

i

D
(&)
-
()]
(@)
 —
)]
2
O
=
O
LL
[
| —
)
-
@)
O

Control Flow Divergence

® You don’t have to worry about divergence
for correctness (*)

® vou might have to think about it for performance
® Depends on your branch conditions

Control Flow Divergence

® performance drops off with the degree of divergence

switch (threadIdx.x % N)
{

case 0:

case 1:

Divergence

Performance

35

30

25

20

15

10

___\

6

8 10

Divergence

12

14

16

18

Atomics

® .tomicAdd returns the previous value at a
certain address

® Useful for grabbing variable amounts of
data from a list

Questions?

Backup

Compare and Swap

int compare and swap(int* register,

int oldval, int newval)
int old reg val = *register;
if (old reg val == oldval)

*register = newval;

return old reg val;

Compare and Swap

® Most general type of atomic

® Can emulate all others with CAS

Locks

® Use very judiciously

® Always include amax iter in your
spinloop!

4 Decompose your data and your locks

