Hardware Implementation of CUDA Memories

Each thread can:
- Read/write per-thread registers
- Read/write per-thread local memory
- Read/write per-block shared memory
- Read/write per-grid global memory
- Read/only per-grid constant memory
CUDA Variable Type Qualifiers

<table>
<thead>
<tr>
<th>Variable declaration</th>
<th>Memory</th>
<th>Scope</th>
<th>Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>int var;</td>
<td>register</td>
<td>thread</td>
<td>thread</td>
</tr>
<tr>
<td>int array_var[10];</td>
<td>local</td>
<td>thread</td>
<td>thread</td>
</tr>
<tr>
<td>shared int shared_var;</td>
<td>shared</td>
<td>block</td>
<td>block</td>
</tr>
<tr>
<td>device int global_var;</td>
<td>global</td>
<td>grid</td>
<td>application</td>
</tr>
<tr>
<td>constant int constant_var;</td>
<td>constant</td>
<td>grid</td>
<td>application</td>
</tr>
</tbody>
</table>

- **“automatic” scalar variables** without qualifier reside in a register
 - compiler will spill to thread local memory
- **“automatic” array variables** without qualifier reside in thread-local memory
CUDA Variable Type Performance

<table>
<thead>
<tr>
<th>Variable declaration</th>
<th>Memory</th>
<th>Penalty</th>
</tr>
</thead>
<tbody>
<tr>
<td>int var;</td>
<td>register</td>
<td>1x</td>
</tr>
<tr>
<td>int array_var[10];</td>
<td>local</td>
<td>100x</td>
</tr>
<tr>
<td>shared int shared_var;</td>
<td>shared</td>
<td>1x</td>
</tr>
<tr>
<td>device int global_var;</td>
<td>global</td>
<td>100x</td>
</tr>
<tr>
<td>constant int constant_var;</td>
<td>constant</td>
<td>1x</td>
</tr>
</tbody>
</table>

- scalar variables reside in fast, on-chip registers
- shared variables reside in fast, on-chip memories
- thread-local arrays & global variables reside in uncached off-chip memory
- constant variables reside in cached off-chip memory
CUDA Variable Type Scale

<table>
<thead>
<tr>
<th>Variable declaration</th>
<th>Instances</th>
<th>Visibility</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>int var;</code></td>
<td>100,000s</td>
<td>1</td>
</tr>
<tr>
<td><code>int array_var[10];</code></td>
<td>100,000s</td>
<td>1</td>
</tr>
<tr>
<td><code>__shared__ int shared_var;</code></td>
<td>100s</td>
<td>100s</td>
</tr>
<tr>
<td><code>__device__ int global_var;</code></td>
<td>1</td>
<td>100,000s</td>
</tr>
<tr>
<td><code>__constant__ int constant_var;</code></td>
<td>1</td>
<td>100,000s</td>
</tr>
</tbody>
</table>

- 100Ks per-thread variables, R/W by 1 thread
- 100s shared variables, each R/W by 100s of threads
- 1 global variable is R/W by 100Ks threads
- 1 constant variable is readable by 100Ks threads
Where to declare variables?

Can host access it?

- Yes
 - Outside of any function
 - `__constant__` int `constant_var`;
 - `__device__` int `global_var`;
 - `__shared__` int `shared_var`;

- No
 - In the kernel
 - int `var`;
 - int `array_var[10]`;
// motivate per-thread variables with
// Ten Nearest Neighbors application
__global__ void ten_nn(float2 *result, float2 *ps, float2 *qs, size_t num_qs)
{
 // p goes in a register
 float2 p = ps[threadIdx.x];

 // per-thread heap goes in off-chip memory
 float2 heap[10];

 // read through num_qs points, maintaining
 // the nearest 10 qs to p in the heap
 ...
 // write out the contents of heap to result
 ...
}
Example – shared variables

// motivate shared variables with
// Adjacent Difference application:
// compute result[i] = input[i] - input[i-1]
__global__ void adj_diff_naive(int *result, int *input)
{
 // compute this thread’s global index
 unsigned int i = blockDim.x * blockIdx.x + threadIdx.x;

 if(i > 0)
 {
 // each thread loads two elements from global memory
 int x_i = input[i];
 int x_i_minus_one = input[i-1];

 result[i] = x_i - x_i_minus_one;
 }
}
Example – shared variables

// motivate shared variables with
// Adjacent Difference application:
// compute result[i] = input[i] - input[i-1]
__global__ void adj_diff_naive(int *result, int *input)
{
 // compute this thread’s global index
 unsigned int i = blockDim.x * blockIdx.x + threadIdx.x;

 if(i > 0)
 {
 // what are the bandwidth requirements of this kernel?
 int x_i = input[i];
 int x_i_minus_one = input[i-1];

 result[i] = x_i - x_i_minus_one;
 }
}

Two loads
Example – shared variables

// motivate shared variables with
// Adjacent Difference application:
// compute \(\text{result}[i] = \text{input}[i] - \text{input}[i-1] \)

__global__ void adj_diff_naive(int *result, int *input)
{
 // compute this thread’s global index
 unsigned int i = blockDim.x * blockIdx.x + threadIdx.x;

 if(i > 0)
 {
 // How many times does this kernel load \(\text{input}[i] \)?
 int x_i = input[i]; // once by thread \(i \)
 int x_i_minus_one = input[i-1]; // again by thread \(i+1 \)

 result[i] = x_i - x_i_minus_one;
 }
}
Example – shared variables

// motivate shared variables with
// Adjacent Difference application:
// compute result[i] = input[i] – input[i-1]
__global__ void adj_diff_naive(int *result, int *input)
{
 // compute this thread’s global index
 unsigned int i = blockDim.x * blockIdx.x + threadIdx.x;

 if(i > 0)
 {
 // Idea: eliminate redundancy by sharing data
 int x_i = input[i];
 int x_i_minus_one = input[i-1];

 result[i] = x_i - x_i_minus_one;
 }
}
Example – shared variables

// optimized version of adjacent difference
__global__ void adj_diff(int *result, int *input)
{
 // shorthand for threadIdx.x
 int tx = threadIdx.x;
 // allocate a __shared__ array, one element per thread
 __shared__ int s_data[BLOCK_SIZE];
 // each thread reads one element to s_data
 unsigned int i = blockDim.x * blockIdx.x + tx;
 s_data[tx] = input[i];

 // avoid race condition: ensure all loads
 // complete before continuing
 __syncthreads();
 ...
}
Example – shared variables

// optimized version of adjacent difference
__global__ void adj_diff(int *result, int *input)
{
 ...

 if(tx > 0)
 result[i] = s_data[tx] - s_data[tx-1];
 else if(i > 0)
 {
 // handle thread block boundary
 result[i] = s_data[tx] - input[i-1];
 }
}
Example – shared variables

// when the size of the array isn’t known at compile time...
__global__ void adj_diff(int *result, int *input)
{
 // use extern to indicate a __shared__ array will be
 // allocated dynamically at kernel launch time
 extern __shared__ int s_data[];
 ...
}

// pass the size of the per-block array, in bytes, as the third
// argument to the triple chevrons
adj_diff<<<num_blocks, block_size, block_size * sizeof(int)>>>(r,i);
Optimization Analysis

Experiment performed on a GT200 chip
- Improvement likely better on an older architecture
- Improvement likely worse on a newer architecture
- Optimizations tend to come with a development cost

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Original</th>
<th>Improved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Loads</td>
<td>2N</td>
<td>N + N/BLOCK_SIZE</td>
</tr>
<tr>
<td>Global Stores</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Throughput</td>
<td>36.8 GB/s</td>
<td>57.5 GB/s</td>
</tr>
<tr>
<td>SLOCs</td>
<td>18</td>
<td>35</td>
</tr>
<tr>
<td>Relative Improvement</td>
<td>1x</td>
<td>1.57x</td>
</tr>
<tr>
<td>Improvement/SLOC</td>
<td>1x</td>
<td>0.81x</td>
</tr>
</tbody>
</table>
About Pointers

- Yes, you can use them!
- You can point at any memory space per se:

```c
__device__ int my_global_variable;
__constant__ int my_constant_variable = 13;

__global__ void foo(void)
{
  __shared__ int my_shared_variable;

  int *ptr_to_global = &my_global_variable;
  const int *ptr_to_constant = &my_constant_variable;
  int *ptr_to_shared = &my_shared_variable;
  ... 
  *ptr_to_global = *ptr_to_shared;
}
```
Pointers aren’t typed on memory space

- `__shared__ int *ptr;`
- Where does `ptr` point?
- `ptr` is a `__shared__` pointer variable, not a pointer to a `__shared__` variable!
__device__ int my_global_variable;
__global__ void foo(int *input)
{
 __shared__ int my_shared_variable;

 int *ptr = 0;
 if(input[threadIdx.x] % 2)
 ptr = &my_global_variable;
 else
 ptr = &my_shared_variable;
 // where does ptr point?
}
Advice

- Prefer dereferencing pointers in simple, regular access patterns
- Avoid propagating pointers
- Avoid pointers to pointers
 - The GPU would rather not pointer chase
 - Linked lists will not perform well
- Pay attention to compiler warning messages
 - Warning: Cannot tell what pointer points to, assuming global memory space
 - Crash waiting to happen
A Common Programming Strategy

- Global memory resides in device memory (DRAM)
 - Much slower access than shared memory
- **Tile data** to take advantage of fast shared memory:
 - Generalize from `adjacent_difference` example
- Divide and conquer
A Common Programming Strategy

- Partition data into subsets that fit into shared memory
A Common Programming Strategy

Handle each data subset with one **thread block**
A Common Programming Strategy

Load the subset from global memory to shared memory, using multiple threads to exploit memory-level parallelism.
A Common Programming Strategy

Perform the computation on the subset from **shared memory**
A Common Programming Strategy

Copy the result from **shared memory** back to global memory
A Common Programming Strategy

- Carefully partition data according to access patterns
- Read-only \Rightarrow **constant** memory (fast)
- R/W & shared within block \Rightarrow **shared** memory (fast)
- R/W within each thread \Rightarrow registers (fast)
- Indexed R/W within each thread \Rightarrow local memory (slow)
- R/W inputs/results \Rightarrow cudaMalloc'ed global memory (slow)
__global__ void race(void) {
 __shared__ int my_shared_variable;
 my_shared_variable = threadIdx.x;

 // what is the value of
 // my_shared_variable?
}
This is a race condition

The result is undefined

The order in which threads access the variable is undefined without explicit coordination

Use barriers (e.g., __syncthreads) or atomic operations (e.g., atomicAdd) to enforce well-defined semantics
Use \texttt{__syncthreads} to ensure data is ready for access.

\begin{verbatim}
__global__ void share_data(int *input)
{
 __shared__ int data[BLOCK_SIZE];
 data[threadIdx.x] = input[threadIdx.x];
 __syncthreads();
 // the state of the entire data array
 // is now well-defined for all threads
 // in this block
}
\end{verbatim}
Use atomic operations to ensure exclusive access to a variable

// assume *result is initialized to 0
__global__ void sum(int *input, int *result)
{
 atomicAdd(result, input[threadIdx.x]);

 // after this kernel exits, the value of
 // *result will be the sum of the input
}
Resource Contention

Atomic operations aren’t cheap!
They imply **serialized access** to a variable

```c
__global__ void sum(int *input, int *result) {
    atomicAdd(result, input[threadIdx.x]);
}
... // how many threads will contend
// for exclusive access to result?
sum<<<B,N/B>>>(input,result);
```
Hierarchical Atomics

Divide & Conquer
- Per-thread `atomicAdd` to a **shared** partial sum
- Per-block `atomicAdd` to the total sum
Hierarchical Atomics

__global__ void sum(int *input, int *result)
{
 __shared__ int partial_sum;

 // thread 0 is responsible for initializing partial_sum
 if(threadIdx.x == 0)
 partial_sum = 0;
 __syncthreads();

 ...
}
Hierarchical Atomics

```c
__global__ void sum(int *input, int *result) {
    ...
    // each thread updates the partial sum
    atomicAdd(&partial_sum, input[threadIdx.x]);
    __syncthreads();

    // thread 0 updates the total sum
    if(threadIdx.x == 0)
        atomicAdd(result, partial_sum);
}
```
Advice

- Use barriers such as \texttt{__syncthreads} to wait until \texttt{__shared__} data is ready.
- Prefer barriers to atomics when data access patterns are \texttt{regular} or \texttt{predictable}.
- Prefer atomics to barriers when data access patterns are \texttt{sparse} or \texttt{unpredictable}.
- Atomics to \texttt{__shared__} variables are much faster than atomics to global variables.
- Don’t synchronize or serialize unnecessarily.
Matrix Multiplication Example

- Generalize `adjacent_difference` example
- $AB = A \times B$
 - Each element AB_{ij}
 - $= \text{dot}(\text{row}(A,i), \text{col}(B,j))$
- Parallelization strategy
 - Thread $\rightarrow AB_{ij}$
 - 2D kernel
First Implementation

```c
__global__ void mat_mul(float *a, float *b, float *ab, int width)
{
    // calculate the row & col index of the element
    int row = blockIdx.y*blockDim.y + threadIdx.y;
    int col = blockIdx.x*blockDim.x + threadIdx.x;

    float result = 0;

    // do dot product between row of a and col of b
    for(int k = 0; k < width; ++k)
        result += a[row*width+k] * b[k*width+col];

    ab[row*width+col] = result;
}
```
How will this perform?

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>How many loads per term of dot product?</td>
<td>2 ((a & b) = 8 \text{ Bytes})</td>
</tr>
<tr>
<td>How many floating point operations?</td>
<td>2 ((\text{multiply} & \text{addition}))</td>
</tr>
<tr>
<td>Global memory access to flop ratio (GMAC)</td>
<td>(8 \text{ Bytes} / 2 \text{ ops} = 4 \text{ B/op})</td>
</tr>
<tr>
<td>What is the peak fp performance of GeForce GTX 260?</td>
<td>805 GFLOPS</td>
</tr>
<tr>
<td>Lower bound on bandwidth required to reach peak fp performance</td>
<td>(\text{GMAC} \times \text{Peak FLOPS} = 4 \times 805 = 3.2 \text{ TB/s})</td>
</tr>
<tr>
<td>What is the actual memory bandwidth of GeForce GTX 260?</td>
<td>112 GB/s</td>
</tr>
<tr>
<td>Then what is an upper bound on performance of our implementation?</td>
<td>(\text{Actual BW} / \text{GMAC} = 112 / 4 = 28 \text{ GFLOPS})</td>
</tr>
</tbody>
</table>
Idea: Use **shared** memory to reuse global data

- Each input element is read by `width` threads
- Load each element into **shared** memory and have several threads use the local version to reduce the memory bandwidth
Tiled Multiply

- Partition kernel loop into phases
- Load a tile of both matrices into __shared__ each phase
- Each phase, each thread computes a partial result
Better Implementation

__global__ void mat_mul(float *a, float *b, float *ab, int width)
{
 // shorthand
 int tx = threadIdx.x, ty = threadIdx.y;
 int bx = blockIdx.x, by = blockIdx.y;
 // allocate tiles in __shared__ memory
 __shared__ float s_a[TILE_WIDTH][TILE_WIDTH];
 __shared__ float s_b[TILE_WIDTH][TILE_WIDTH];
 // calculate the row & col index
 int row = by*blockDim.y + ty;
 int col = bx*blockDim.x + tx;

 float result = 0;
Better Implementation

// loop over the tiles of the input in phases
for(int p = 0; p < width/TILE_WIDTH; ++p)
{
 // collaboratively load tiles into __shared__
 s_a[ty][tx] = a[row*width + (p*TILE_WIDTH + tx)];
 s_b[ty][tx] = b[(m*TILE_WIDTH + ty)*width + col];
 __syncthreads();

 // dot product between row of s_a and col of s_b
 for(int k = 0; k < TILE_WIDTH; ++k)
 {
 result += s_a[ty][k] * s_b[k][tx];
 __syncthreads();
 }
}

ab[row*width+col] = result;
Use of Barriers in mat_mul

Two barriers per phase:

- `__syncthreads` after all data is loaded into `__shared__` memory
- `__syncthreads` after all data is read from `__shared__` memory

Note that second `__syncthreads` in phase p guards the load in phase $p+1$

Use barriers to **guard** data
- Guard against using uninitialized data
- Guard against bashing live data
First Order Size Considerations

- Each **thread block** should have many threads
 - TILE_WIDTH = 16 → 16*16 = 256 threads

- There should be many thread blocks
 - 1024*1024 matrices → 64*64 = 4096 thread blocks
 - TILE_WIDTH = 16 → gives each SM 3 blocks, 768 threads
 - Full **occupancy**

- Each thread block performs 2 * 256 = 512 32b loads for 256 * (2 * 16) = 8,192 fp ops
 - Memory bandwidth no longer limiting factor
Optimization Analysis

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Original</th>
<th>Improved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Loads</td>
<td>$2N^3$</td>
<td>$2N^2 \times (N/TILE_WIDTH)$</td>
</tr>
<tr>
<td>Throughput</td>
<td>10.7 GFLOPS</td>
<td>183.9 GFLOPS</td>
</tr>
<tr>
<td>SLOCs</td>
<td>20</td>
<td>44</td>
</tr>
<tr>
<td>Relative Improvement</td>
<td>1x</td>
<td>17.2x</td>
</tr>
<tr>
<td>Improvement/SLOC</td>
<td>1x</td>
<td>7.8x</td>
</tr>
</tbody>
</table>

- Experiment performed on a GT200
- This optimization was clearly worth the effort
- Better performance still possible in theory
TILE_SIZE Effects

<table>
<thead>
<tr>
<th>TILE_SIZE</th>
<th>GFLOPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>untiled</td>
<td>10</td>
</tr>
<tr>
<td>2x2</td>
<td>5</td>
</tr>
<tr>
<td>4x4</td>
<td>10</td>
</tr>
<tr>
<td>8x8</td>
<td>20</td>
</tr>
<tr>
<td>12x12</td>
<td>25</td>
</tr>
<tr>
<td>14x14</td>
<td>30</td>
</tr>
<tr>
<td>15x15</td>
<td>35</td>
</tr>
<tr>
<td>16x16</td>
<td>180</td>
</tr>
</tbody>
</table>

© 2008 NVIDIA Corporation
Effective use of different memory resources reduces the number of accesses to global memory.

These resources are finite!

The more memory locations each thread requires → the fewer threads an SM can accommodate.

Memory Resources as Limit to Parallelism

<table>
<thead>
<tr>
<th>Resource</th>
<th>Per GT200 SM</th>
<th>Full Occupancy on GT200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registers</td>
<td>16384</td>
<td><= 16384 / 768 threads = 21 per thread</td>
</tr>
<tr>
<td>shared Memory</td>
<td>16KB</td>
<td><= 16KB / 8 blocks = 2KB per block</td>
</tr>
</tbody>
</table>
Final Thoughts

- Effective use of CUDA memory hierarchy decreases bandwidth consumption to increase **throughput**
- Use `__shared__` memory to eliminate redundant loads from global memory
 - Use `__syncthreads` barriers to protect `__shared__` data
 - Use atomics if access patterns are sparse or unpredictable
- Optimization comes with a development cost
- Memory resources ultimately limit parallelism

Tutorials
- `thread_local_variables.cu`
- `shared_variables.cu`
- `matrix_multiplication.cu`