CS 193G
Lecture 5: Parallel Patterns I
Getting out of the trenches

So far, we’ve concerned ourselves with low-level details of kernel programming
- Mapping of threads to work
- Launch grid configuration
- __shared__ memory management
- Resource allocation

Lots of moving parts

Hard to see the forest for the trees
CUDA Madlibs

```c
__global__ void foo(...) {
    extern __shared__ smem[];
    int i = ???

    // now what???
}
...
int B = ???
int N = ???
int S = ???
foo<<<B,N,S>>>();
```
Parallel Patterns

- Think at a higher level than individual CUDA kernels
- Specify what to compute, not how to compute it
- Let programmer worry about algorithm
- Defer pattern implementation to someone else
Common Parallel Computing Scenarios

- Many parallel threads need to generate a single result → **Reduce**
- Many parallel threads need to partition data → **Split**
- Many parallel threads produce variable output / thread → **Compact / Expand**
Primordial CUDA Pattern: Blocking

- Partition data to operate in well-sized blocks
 - Small enough to be staged in shared memory
 - Assign each data partition to a thread block
 - No different from cache blocking!

- Provides several performance benefits
 - Have enough blocks to keep processors busy
 - Working in shared memory cuts memory latency dramatically
 - Likely to have coherent access patterns on load/store to shared memory
Partition data into subsets that fit into shared memory
Primordial CUDA Pattern: Blocking

Handle each data subset with one thread block
Load the subset from global memory to shared memory, **using multiple threads to exploit memory-level parallelism**
Perform the computation on the subset from shared memory
Primordial CUDA Pattern: Blocking

Copy the result from **shared memory** back to global memory
Primordial CUDA Pattern: Blocking

- All CUDA kernels are built this way
 - Blocking may not matter for a particular problem, but you’re still forced to think about it
 - Not all kernels require `__shared__` memory
 - All kernels do require registers

- All of the parallel patterns we’ll discuss have CUDA implementations that exploit blocking in some fashion
Reduction

Reduce vector to a single value
- Via an associative operator (+, *, min/max, AND/OR, …)
- CPU: sequential implementation
  ```cpp
  for(int i = 0, i < n, ++i) ...
  ```
- GPU: “tree”-based implementation
Serial Reduction

// reduction via serial iteration
float sum(float *data, int n)
{
 float result = 0;
 for(int i = 0; i < n; ++i)
 {
 result += data[i];
 }

 return result;
}
Parallel Reduction – Interleaved

<table>
<thead>
<tr>
<th>Values (in shared memory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2</td>
</tr>
</tbody>
</table>

Step 1
- **Stride 1**
 - Thread IDs: 0 1 2 3 4 5 6 7
 - Values:
 - 11 1 7 -1 -2 -2 8 5 -5 -3 9 7 11 11 2 2

Step 2
- **Stride 2**
 - Thread IDs: 0 1 2 3
 - Values:
 - 18 1 7 -1 6 -2 8 5 4 -3 9 7 13 11 2 2

Step 3
- **Stride 4**
 - Thread IDs: 0 1
 - Values:
 - 24 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2

Step 4
- **Stride 8**
 - Thread IDs: 0
 - Values:
 - 41 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2
Parallel Reduction – Contiguous

Values (in shared memory)

<table>
<thead>
<tr>
<th>Step</th>
<th>Thread IDs</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 1 2 3 4 5 6 7</td>
<td>10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2</td>
</tr>
<tr>
<td>2</td>
<td>0 1 2 3</td>
<td>8 -2 10 6 0 9 3 7 -2 -3 2 7 0 11 0 2</td>
</tr>
<tr>
<td>3</td>
<td>0 1</td>
<td>8 7 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>21 20 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>41 20 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2</td>
</tr>
</tbody>
</table>
CUDA Reduction

__global__ void block_sum(float *input,
 float *results,
 size_t n)
{
 extern __shared__ float sdata[];
 int i = ..., int tx = threadIdx.x;

 // load input into __shared__ memory
 float x = 0;
 if(i < n)
 x = input[i];
 sdata[tx] = x;
 __syncthreads();
CUDA Reduction

// block-wide reduction in __shared__ mem
for (int offset = blockDim.x / 2;
 offset > 0;
 offset >>= 1)
{
 if (tx < offset)
 {
 // add a partial sum upstream to our own
 sdata[tx] += sdata[tx + offset];
 }
 __syncthreads();
}
CUDA Reduction

// finally, thread 0 writes the result
if(threadIdx.x == 0)
{
 // note that the result is per-block
 // not per-thread
 results[blockIdx.x] = sdata[0];
}
}
An Aside

// is this barrier divergent?
for(int offset = blockDim.x / 2;
 offset > 0;
 offset >>= 1)
{
 ...
 __syncthreads();
}
An Aside

// what about this one?
__global__ void do_i_halt(int *input)
{
 int i = ...
 if(input[i])
 {
 ...
 __syncthreads(); // a divergent barrier
 // hangs the machine
 }
}
CUDA Reduction

// global sum via per-block reductions
float sum(float *d_input, size_t n)
{
 size_t block_size = ..., num_blocks = ...;

 // allocate per-block partial sums
 // plus a final total sum
 float *d_sums = 0;
 cudaMalloc((void**)&d_sums,
 sizeof(float) * (num_blocks + 1));
 ...

CUDA Reduction

// reduce per-block partial sums
int smem_sz = block_size*sizeof(float);
block_sum<<<num_blocks,block_size,smem_sz>>>
 (d_input, d_sums, n);

// reduce partial sums to a total sum
block_sum<<<1,block_size,smem_sz>>>
 d_sums, d_sums + num_blocks, num_blocks);

// copy result to host
float result = 0;
cudaMemcpy(&result, d_sums+num_blocks, ...);
return result;
Caveat Reductor

What happens if there are too many partial sums to fit into \texttt{__shared__} memory in the second stage?

What happens if the temporary storage is too big?

Give each thread more work in the first stage

- Sum is \texttt{associative} \& \texttt{commutative}
- Order doesn’t matter to the result
- We can schedule the sum any way we want
 \rightarrow serial accumulation before block-wide reduction

Exercise left to the hacker
Parallel Reduction Complexity

- **Log**(N) parallel steps, each step S does \(N/2^S\) independent ops
 - **Step Complexity** is \(O(\log N)\)
- For \(N=2^D\), performs \(\sum_{S \in [1..D]} 2^{D-S} = N-1\) operations
 - **Work Complexity** is \(O(N)\) – It is work-efficient
 - i.e. does not perform more operations than a sequential algorithm
- With \(P\) threads physically in parallel (\(P\) processors), **time complexity** is \(O(N/P + \log N)\)
 - Compare to \(O(N)\) for sequential reduction
Given: array of true and false elements (and payloads)

Return an array with all true elements at the beginning

Examples: sorting, building trees
Variable Output Per Thread: Compact

- Remove null elements

Example: collision detection
Variable Output Per Thread: General Case

Reserve Variable Storage Per Thread

Example: binning
Split, Compact, Expand

- Each thread must answer a simple question:

 “Where do I write my output?”

- The answer depends on what other threads write!

- **Scan** provides an efficient parallel answer
Scan (a.k.a. Parallel Prefix Sum)

Given an array \(A = [a_0, a_1, \ldots, a_{n-1}] \)
and a binary associative operator \(\oplus \) with identity \(I \),

\[
\text{scan}(A) = [I, a_0, (a_0 \oplus a_1), \ldots, (a_0 \oplus a_1 \oplus \ldots \oplus a_{n-2})]
\]

Prefix sum: if \(\oplus \) is addition, then scan on the series

\[
\begin{array}{ccccccc}
3 & 1 & 7 & 0 & 4 & 1 & 6 & 3 \\
\end{array}
\]

returns the series

\[
\begin{array}{cccccccc}
0 & 3 & 4 & 11 & 11 & 15 & 16 & 22 \\
\end{array}
\]
Applications of Scan

Scan is a simple and useful parallel building block for many parallel algorithms:

- Radix sort
- Quicksort (seg. scan)
- String comparison
- Lexical analysis
- Stream compaction
- Run-length encoding
- Polynomial evaluation
- Solving recurrences
- Tree operations
- Histograms
- Allocation
- Etc.

Fascinating, since scan is unnecessary in sequential computing!
int input[8] = {3, 1, 7, 0, 4, 1, 6, 3};
int result[8];
int running_sum = 0;
for(int i = 0; i < 8; ++i)
{
 result[i] = running_sum;
 running_sum += input[i];
}

// result = {0, 3, 4, 11, 11, 15, 16, 22}
A Scan Algorithm – Preview

3 1 7 0 4 1 6 3

Assume array is already in shared memory

See Harris, M., S. Sengupta, and J.D. Owens. “Parallel Prefix Sum (Scan) in CUDA”, GPU Gems 3
A Scan Algorithm – Preview

<table>
<thead>
<tr>
<th>3</th>
<th>1</th>
<th>7</th>
<th>0</th>
<th>4</th>
<th>1</th>
<th>6</th>
<th>3</th>
</tr>
</thead>
</table>

Iteration 0, $n-1$ threads

| 3 | 4 | 8 | 7 | 4 | 5 | 7 | 9 |

Iterate $\log(n)$ times. Each thread adds value \textit{stride} elements away to its own value.

Each ✖️ corresponds to a single thread.
A Scan Algorithm – Preview

Iterate \(\log(n) \) times. Each thread adds value \(\text{offset} \) elements away to its own value.

Iteration 1, \(n-2 \) threads

Each \(+ \) corresponds to a single thread.
A Scan Algorithm – Preview

Iterate log(n) times. Each thread adds value offset elements away to its own value.

Note that this algorithm operates in-place: no need for double buffering.
A Scan Algorithm – Preview

| 3 | 4 | 11 | 11 | 15 | 16 | 22 | 25 |

We have an **inclusive** scan result
A Scan Algorithm – Preview

For an **exclusive** scan, right-shift through **__shared__** memory

Note that the unused final element is also the sum of the entire array

- Often called the “carry”
- Scan & reduce in one pass
__global__ void inclusive_scan(int *data) {
 extern __shared__ int sdata[];

 unsigned int i = ...

 // load input into __shared__ memory
 int sum = input[i];
 sdata[threadIdx.x] = sum;
 __syncthreads();
 ...
}
CUDA Block-wise Inclusive Scan

```c
for(int o = 1; o < blockDim.x; o <<= 1)
{
    if(threadIdx.x >= o)
        sum += sdata[threadIdx.x - o];

    // wait on reads
    __syncthreads();

    // write my partial sum
    sdata[threadIdx.x] = sum;

    // wait on writes
    __syncthreads();
}
```
CUDA Block-wise Inclusive Scan

// we're done!
// each thread writes out its result
result[i] = sdata[threadIdx.x];
}
Results are Local to Each Block

Block 0

Input:
5 5 4 4 5 4 0 0 4 2 5 5 1 3 1 5

Result:
5 10 14 18 23 27 27 27 31 33 38 43 44 47 48 53

Block 1

Input:
1 2 3 0 3 0 2 3 4 4 3 2 2 5 5 0

Result:
1 3 6 6 9 9 11 14 18 22 25 27 29 34 39 39
Results are Local to Each Block

- Need to propagate results from each block to all subsequent blocks

- 2-phase scan
 1. Per-block scan & reduce
 2. Scan per-block sums

- Final update propagates phase 2 data and transforms to exclusive scan result

- Details in MP3
Patterns like `reduce`, `split`, `compact`, `scan`, and others let us reason about data parallel problems abstractly.

Higher level patterns are built from more fundamental patterns.

Scan in particular is fundamental to parallel processing, but unnecessary in a serial world.

Get others to implement these for you! → but not until after MP3.