Salles V. G. de Magalhães, W. Randolph Franklin, and Marcus V. A. Andrade. An efficient and exact parallel algorithm for intersecting large 3-d triangular meshes using arithmetic filters. J. Computer Aided Design, March 2020. online 2019-12-19. doi:https://doi.org/10.1016/j.cad.2019.102801.
[full text] [BibTeX▼]

Abstract

We present 3D-EPUG-OVERLAY, a fast, exact, parallel, memory-efficient, algorithm for computing the intersection between two large 3-D triangular meshes with geometric degeneracies. Applications include CAD/CAM, CFD, GIS, and additive manufacturing. 3D-EPUG-OVERLAY combines 5 techniques: multiple precision rational numbers to eliminate roundoff errors during the computations; Simulation of Simplicity to properly handle geometric degeneracies; simple data representations and only local topological information to simplify the correct processing of the data and make the algorithm more parallelizable; a uniform grid to efficiently index the data, and accelerate testing pairs of triangles for intersection or locating points in the mesh; and parallel programming to exploit current hardware. 3D-EPUG-OVERLAY is up to 101 times faster than LibiGL, and comparable to QuickCSG, a parallel inexact algorithm. 3D-EPUG-OVERLAY is also more memory efficient. In all test cases, 3D-EPUG-OVERLAY’s result matched the reference solution. It is freely available for nonprofit research and education at https://github.com/sallesviana/MeshIntersection.

Full Text

Your browser does not support viewing the PDF file inline. Please click the link below to download the file.

[download]