
NEARPT3 — Nearest Point
Query in E3 with a Uniform

Grid
W. Randolph Franklin

Rensselaer Polytechnic Institute

geom@wrfranklin.org

http://wrfranklin.org/

November 20, 2004

1

—What?—
� Consider N fixed points, p, drawn from some distribution, D, in

E3.

� Preprocess them.

� Select query points, q, also from D.

� For each q find the closest p.

� Optimize for N ≈ 107.

� Optimize for real examples from, e.g., Georgia Tech Large

Geometric Models Archive.

� Bone6 example: 105.45 each fixed points and queries. Total

preprocessing and query time: 28 seconds on this laptop.

2

—Bone6—

Note the nonuniformity.

3

—Prior Art—
Data structures:

� Voronoi diagram. Tp = Ω(N log N) to O(N2) in time and

space. Tq = θ(log N).

� Range tree. Tp = θ(N log N). Tq = θ(log N).

Implementations:

� Approximate Nearest Neighbors (ANN).

� CGAL.

4

—Broader Implication—

� Simple data structures often work.

� Data dependent: Worst case is worse, but real data sets are quite

good.

� Larger datasets will now fit in real memory

� ... and be processed much more quickly.

� External data structures are less necessary.

5

—General Idea—
1. Superimpose a uniform grid in E3 on the data.

2. Insert the fixed points.

3. Locate the queries and spiral out.

6

—The Three Stages of the Computation—

Antepreprocessing w/o data. Compute-bound work that is

independent of the data.

Preprocessing of the fixed points.

Querying to find closest fixed point to each query.

7

—Antepreprocessing (w/o data)—
1. Sort the cells of a grid in E3 by distance of the closest corner

from O.

2. For each cell, c, find its stop cell, the last cell in the list whose

closest point is closer than the farthest point of c.

3. Why factor out this step? It’s surprisingly slow.

8

—Preprocessing (of the fixed points)—
1. Choose G, the grid resolution.

2. Filter the points, counting the number of points in each cell.

3. Allocate a ragged array to store the points in the cells.

4. Read the points again, inserting into the cells.

9

—Querying—
1. Locate the query point.

2. Spiral out, following the antepreprocessed cell list.

—Next Slide: Other Test Data—

10

Bunny Hand

Dragon Uniform

11

—Results—

Data set Source # fixed
points # queries

CPU
time,
secs

Bunny GIT 17973 17974 1.9

Hand GIT 163661 163662 16

Dragon GIT 218882 218883 21

Bone6 GIT 284818 284818 28

Uniform
random generated 106 106 128

12

—Extensions & Restrictions—
1. Approximate nearest neighbors obvious.

2. Nearest neighbors in E2.

13

—Restriction to E2—
1. Compare to APPROXIMATE NEAREST NEIGHBORS (ANN) and to

CGAL 3.0.1’s NEAREST_NEIGHBOR_SEARCHING.

2. No I/O here. (Randomly generated input. Output discarded.)

3. Compiler choice affects speed somewhat, but not space.

14

Fixed,
Queries Program Time Storage

106 NEARPT2 9.4 46MB

CGAL NNS 41 120MB

ANN 41 128MB

107 NEARPT2 98 458MB

CGAL NNS — —

ANN — —

15

—Future—
1. Reduce query time.

2. Process UNC Complete Powerplant (about 3M unique vertices).

3. Larger datasets anyone?

16

