
Operating on Large Geometric Datasets
FWCG2008

W. Randolph Franklin1

Rensselaer Polytechnic Institute
Troy, NY, 12180

1 Nov, 2008

1(518) 276-6077, frankwr@rpi.edu, http://wrfranklin.org/
1 / 13

The Problem and the conventional
solution

∵ Geometric datasets grow too large to easily fit into
core.

∴ Must use external algorithms.
1 I/O is expensive.
2 Random I/O is very expensive.

2 / 13

My approach
1 Stay in core as long as possible — fast, random.
2 Use compact data structures.
3 Minimize explicit topological data structures.
4 Use input-sensitive algorithms
5 Optimize operator compositions.
6 Try for Linear time — superlinear times, even

T = θ(N log N), are too slow

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 1.6e+08

 1.8e+08

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07

x*log(x)
x

x log(x) > x

3 / 13

Minimize the explicit topology
1 Explicitly storing the minimum possible structure saves

space
2 and often facilitates simpler algorithms.
3 E.g., how simple can a polyhedron P be?
4 The set of faces, F = {fi}, often suffices.
5 That permits

1 Inclusion determination: Point x is contained in P iff a
semi-infinite ray from x crosses an odd number of fi .

2 Volume computation: The volume V of P is the sum of the
volumes of all the pyramids determined by the fi and the
origin. Other mass properties follow similarly.

6 Global topology of the hierarchy of nested inclusions of
shells of faces is never required

7 That could have been derived if necessary.
8 We can get even simpler.

4 / 13

Set of Incidences

1 Polyhedron: {(P, T̂ , N̂, B̂)}
2 One per incidence, 6 per cube vertex.
3 V = −1

6
∑

(P · T̂) (P · N̂) (P · B̂)

4 That’s a Google map reduce.
5 Irrelevant: multiple nested components, nonmanifold

vertices.

5 / 13

Input-sensitive

1 Line segment intersections in E2

1 K , number of intersections among N line segments of
length L in E2 1× 1 region.

2 Kmax = N2/2
3 i.i.d input: K = N2L2/4

2 Visible edge intersections among overlaid squares
1 Overlay, 1-by-1, N L× L random squares inside 1× 1

region.
2 Later squares hide earlier squares.
3 K , number of edge intersections
4 i.i.d input: K = θ(N2L2)
5 Kv , number of visible edge intersections
6 Kvmax = N2/2
7 i.i.d input: Kv = θ(N)
8 independent of depth ((NL2)) of scene.

6 / 13

Time for visible edge intersections
among overlaid squares

1 This linearity is key to linearity of volume of cube union
later.

2 N , number of squares, L , edge length, G , number of
grid cells per side = 3/L

3 · · · tedious derivation· · ·
4 expected number of intersection tests performed per cell is

Ntpc ≤ 2L2N
(

1 + 4L2N
)

e−
L2N

4

5 Total number of intersection tests

Ntt = 9L−2Ntpc = 18N
(

1 + 4L2N
)

e−
L2N

4 < 18(1+16e−1)N

7 / 13

Segment intersection is linear time for
every non i.i.d application we’ve tried

Roads Counties, hydrog

VLSI
Nonuniform mesh

8 / 13

Optimize operator compositions

1 Goal1 Volume of union of two polyhedra
2 Do not first compute union.
3 Requires only set of vertices of result, with their

neighborhoods.
4 Does not require any global info. No edges. No faces.

1 Goal2 Volume of union of many polyhedra
2 Requires only · · ·
3 Does not require · · ·
4 Does not require Building a computation tree of depth

lg(N)

5 No intermediate swell.

9 / 13

Volume of the union of many cubes

Union of cubes
Don’t need this computation

tree

Output vertices
Culling possible intersections

10 / 13

Volume of the union of many cubes

1 V =
∑

sixiyizi

2 This is exact, not Monte Carlo.
3 Output vertex is input vertex, or union of input face and

edge, or union of 3 faces.
4 Output vertex is not in any input cube.
5 Determine neighborhood of each output vertex.
6 Superimpose uniform grid, proportional to cube size
7 In a cell contained in one cube, no output vertices in that

cell.
8 Number of surviving vertices is linear.
9 Linear time.

11 / 13

Volume of the union of many cubes —
implementation

Number of cubes vs time

1 < 1000 lines of C + + on 2.4GHz dual Xeon.
2 Input: Up to 30 000 000 identical isothetic random cubes. 12 / 13

Conclusion

1 Simple, local topological, data structures
2 Optimizing composition of operators

facilitate
1 linear expected time algorithms
2 for processing large data structures

13 / 13

	The Problem and the conventional solution
	My approach
	Minimize the explicit topology
	Set of Incidences
	Input-sensitive
	Time for visible edge intersections among overlaid squares
	Segment intersection is linear time for every non i.i.d application we've tried
	Optimize operator compositions
	Volume of the union of many cubes
	Volume of the union of many cubes
	Volume of the union of many cubes --- implementation
	Conclusion

