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The Problem and the conventional
solution

∵ Geometric datasets grow too large to easily fit into
core.

∴ Must use external algorithms.
1 I/O is expensive.
2 Random I/O is very expensive.
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My approach
1 Stay in core as long as possible — fast, random.
2 Use compact data structures.
3 Minimize explicit topological data structures.
4 Use input-sensitive algorithms
5 Optimize operator compositions.
6 Try for Linear time — superlinear times, even

T = θ(N log N), are too slow
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Minimize the explicit topology
1 Explicitly storing the minimum possible structure saves

space
2 and often facilitates simpler algorithms.
3 E.g., how simple can a polyhedron P be?
4 The set of faces, F = {fi}, often suffices.
5 That permits

1 Inclusion determination: Point x is contained in P iff a
semi-infinite ray from x crosses an odd number of fi .

2 Volume computation: The volume V of P is the sum of the
volumes of all the pyramids determined by the fi and the
origin. Other mass properties follow similarly.

6 Global topology of the hierarchy of nested inclusions of
shells of faces is never required

7 That could have been derived if necessary.
8 We can get even simpler.

4 / 13



Set of Incidences

1 Polyhedron: {(P, T̂ , N̂, B̂)}
2 One per incidence, 6 per cube vertex.
3 V = −1

6
∑

(P · T̂ ) (P · N̂) (P · B̂)

4 That’s a Google map reduce.
5 Irrelevant: multiple nested components, nonmanifold

vertices.
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Input-sensitive

1 Line segment intersections in E2

1 K , number of intersections among N line segments of
length L in E2 1× 1 region.

2 Kmax = N2/2
3 i.i.d input: K = N2L2/4

2 Visible edge intersections among overlaid squares
1 Overlay, 1-by-1, N L× L random squares inside 1× 1

region.
2 Later squares hide earlier squares.
3 K , number of edge intersections
4 i.i.d input: K = θ(N2L2)
5 Kv , number of visible edge intersections
6 Kvmax = N2/2
7 i.i.d input: Kv = θ(N)
8 independent of depth ((NL2)) of scene.
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Time for visible edge intersections
among overlaid squares

1 This linearity is key to linearity of volume of cube union
later.

2 N , number of squares, L , edge length, G , number of
grid cells per side = 3/L

3 · · · tedious derivation· · ·
4 expected number of intersection tests performed per cell is

Ntpc ≤ 2L2N
(

1 + 4L2N
)

e−
L2N

4

5 Total number of intersection tests

Ntt = 9L−2Ntpc = 18N
(

1 + 4L2N
)

e−
L2N

4 < 18(1+16e−1)N
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Segment intersection is linear time for
every non i.i.d application we’ve tried

Roads Counties, hydrog

VLSI
Nonuniform mesh
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Optimize operator compositions

1 Goal1 Volume of union of two polyhedra
2 Do not first compute union.
3 Requires only set of vertices of result, with their

neighborhoods.
4 Does not require any global info. No edges. No faces.

1 Goal2 Volume of union of many polyhedra
2 Requires only · · ·
3 Does not require · · ·
4 Does not require Building a computation tree of depth

lg(N)

5 No intermediate swell.
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Volume of the union of many cubes

Union of cubes
Don’t need this computation

tree

Output vertices
Culling possible intersections
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Volume of the union of many cubes

1 V =
∑

sixiyizi

2 This is exact, not Monte Carlo.
3 Output vertex is input vertex, or union of input face and

edge, or union of 3 faces.
4 Output vertex is not in any input cube.
5 Determine neighborhood of each output vertex.
6 Superimpose uniform grid, proportional to cube size
7 In a cell contained in one cube, no output vertices in that

cell.
8 Number of surviving vertices is linear.
9 Linear time.
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Volume of the union of many cubes —
implementation

Number of cubes vs time

1 < 1000 lines of C + + on 2.4GHz dual Xeon.
2 Input: Up to 30 000 000 identical isothetic random cubes. 12 / 13



Conclusion

1 Simple, local topological, data structures
2 Optimizing composition of operators

facilitate
1 linear expected time algorithms
2 for processing large data structures
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