Compressing Terrain Slopes with ODETLAP
Daniel M. Tracy, W. Randolph Franklin, Barbara Cutler, Marcus Andrade, Metin Inanc, Zhongyi Xie
Rensselaer Polytechnic Institute

Abstract:
We extend the ODETLAP compression algorithm to include slope equations to specifically target the compression of terrain slopes. Given a subset of the elevations and slopes from the terrain, ODETLAP can reconstruct a full-resolution approximation of the terrain.

ODETLAP:
Overdetermined set of linear equations
Original ODETLAP equations:
Discrete approx. of Laplacian PDE:
\[z_{i,j} = \frac{(z_{i+1,j} + z_{i-1,j} + z_{i,j+1} + z_{i,j-1})}{4} \]
Known elevations:
\[z_{i,j} = h_{i,j} \]
Plus new slope equations, derived from Zevenbergen-Thorne slope method:
\[z_{i+1,j} - z_{i-1,j} = h_{i+1,j} - h_{i-1,j} \]
\[z_{i,j+1} - z_{i,j-1} = h_{i,j+1} - h_{i,j-1} \]

Algorithm:
1. Start with regular grid of elevations.
2. Iteratively solve ODETLAP and add points with largest slope error to the system.
3. Encode (x,y) with Run Length Coding.
4. Encode Az lossily with k-means clustering.

Compression vs. error (400x400 terrain)

References:
1. W. Randolph Franklin, Metin Inanc, and Zhongyi Xie, “Two Novel Surface Representation Techniques”, Autocarto 2006