Geometric Operations on Millions of Objects

W. Randolph Franklin

Rensselaer Polytechnic Institute
Troy, NY, USA

UF Viçosa 24 Jul 2013

Partially supported by FAPEMIG and NSF grants CMMI-0835762 and IIS-1117277.
• Larger geometric datasets $\gg 10^6$ objects
• New parallel HW — restricted capabilities
• \therefore Need new algorithms, data structures.
Why parallel HW?

• More processing → faster clock speed
• faster → more electrical power
• faster → smaller features on chip
• smaller → greater electrical resistance !
• ⇒⇐
• Serial processors have hit a wall.
Parallel HW features

- IBM Blue Gene / Intel / NVidia GPU / other
- Most laptops have NVidia GPUs.
- Thousands of cores / CPUs / GPUs
- Lower clock speed 750MHz vs 3.4GHz
- Hierarchy of memory: small/fast → big/slow
- Communication cost ≫ computation cost
- Efficient for blocks of threads to execute SIMD.
Geometric Databases

• Larger and larger geometric databases now available, with tens of millions of primitive components.

• Needed operations:
 • interference detection
 • boolean: intersection, union
 • planar graph overlay
 • mass property computation of the results of some boolean operation

• Apps:
 • Volume of an object defined as the union of many overlapping primitives. Two object interfere iff the volume of intersection is positive.
 • Interpolate population data from census tracts to flood zones.
Algorithm Themes

- I/O more limiting than computation \rightarrow minimize storage
- For $N \gg 1000000$, $\lg N$ nontrivial \rightarrow deprecate binary trees
- Minimize explicit topology, especially 3D.
- Plan for 3D; many 2D data structures not easily extensible to 3D, e.g., line sweep.
- E.g., Voronoi diagram: 2D is $\theta(N \lg N)$. 3D is $\theta(N^2)$
Confessions

• Not a deep philosophical thinker; always seeing holes in generalities.
• Prefer Galileo to Aristotle. Galileo experimented.
• Do small things well, lay a foundation, generalize.
• Driven by Euclidean geometry, where order is implicit in the axioms.
• Explicit representations unnecessary.
• Example of hidden order: the centroid, circumcenter, and orthocenter of a triangle collinear.
Theme: Minimum Explicit Topology

• What explicit info does the application need? Less → simpler
• Object: polygon with multiple nested components and holes.
• Apps:
 • area
 • inclusion testing.
• Complete topology: loops of edges; the tree of component containments.
• Necessary info: the set of oriented edges.
• "Jordan curve" method
• Extend a semi-infinite ray.
• Count intersections.
• Odd \iff Inside
• Obvious but bad alternative: sum subtended angles. Implementing w/o arctan, and handling special cases wrapping around 2π is tricky and reduces to Jordan curve.
Area Computation on a Set of Edges

• Each edge, with the origin, defines a triangle.
• Sum their signed areas
 \[A(P) = \sum A(t_i) \]
Advantages of Set of Edges Data Structure

• Simple enough to debug.
 SW can be simple enough that there are obviously no errors, or
 complex enough that there are no obvious errors.

• Less space to store.

• Easy parallelization.
 • Partition edges among processors.
 • Each processor sums areas independently, to produce one
 subtotal.
 • Total the subtotals.
What About a Set of Vertices Data Structure?

- Too simple.
- Ambiguous: two distinct polygons may have the same set of edges.
Set of Vertex-Edge Incidences

• Another minimal data structure.
• Only data type is incidence of an edge and a vertex, and its neighborhood. For each such:
 • $V =$ coord of vertex
 • $T =$ unit tangent vector along the edge
 • $N =$ unit vector normal to T pointing into the polygon.
• Polygon: $\{(V, T, N)\}$ (2 tuples per vertex)
• Perimeter $= - \sum (V \cdot T)$.
• Area $= \frac{1}{2} \sum (V \cdot T)(V \cdot N)$
• Multiple nested components ok.
Demonstration: Mass Properties of the Union of Millions of Cubes
Unifying Example: Mass of Union

- Nice unifying illustration of several ideas.
- Do a prototype on an easy subcase (congruent axis-aligned cubes).
- However extends to general polyhedra.
- **Not** statistical sampling — exact output, apart from significant digit loss.
- **Not** subdivision-into-voxel method — the cubes’ coordinates can be any representable numbers.
Application: Cutting Tool Path

- Represent path of a tool as piecewise line.
- Each piece sweeps a polyhedron.
- Volume of material removed is (approx) volume of union of those polyhedra.
- Image is from Surfware Inc’s Surfcam website.
• Construct pairwise unions of primitives.
• Iterate.

Time depends on intermediate swell, and elementary intersection time.
• Let $P =$ size of union of an M-gon and an N-gon. Then $P = O(MN)$.
• Time for union (using line sweep) $T = \theta(P \log P)$.
• Total $T = O(N^2 \log N)$.

Hard to parallelize upper levels of computation tree.
Problems With Traditional Method

- \(\log N \) levels in computation tree cause \(\log N \) factor in execution time. Consider \(N > 20 \).
- Intermediate swell: worse as overlap is worse. Intermediate computations may be much larger than final result.
- The explicit volume has complicated topology: loops of edges, shells of faces, nonmanifold adjacencies.
- Tricky to get right.
- The explicit volume not needed for computing mass properties.
- Set of vertices with neighborhoods suffices.
Volume Determination

Box: \(V = \sum_i s_i x_i y_i z_i \)
\(s_i : +1 \text{ or } -1 \)

General rectilinear polygons:
- 8 types of vertices, based on neighborhood
- 4 are type +, 4 –
- Area = \(\sum_i s_i x_i y_i \)

- Rectilinear polyhedra: \(V = \sum_i s_i x_i y_i z_i \)
- \(\exists \) formulae for general polyhedra.
Properties

Represent output union polyhedron as set of vertices with neighborhoods.

- no explicit edges; no edge loops.
- no explicit faces; no face shells.
- no component containment info.
- general polygons ok: multiple nested or separate comps.
- any mass property determinable in one pass thru the set.
- parallelizable.
- compatible with slow I/O.
Volume Computation Overview

- Find all vertices of output object.
- For each vertex, find location and local geometry.
- Sum over vertices, applying formula.
Finding the Vertices

3 types of output vertex:
- Input vertex,
- Edge–face intersection,
- Face–face–face intersection.

- Find possible output vertices, and filter.
- An output vertex must not be contained in any input cube.
- Isn’t intersecting all triples of faces, then testing each candidate output vertex against every input cube too slow?
- No, if we do it right.
3D Uniform Grid

Summary
• Overlay a uniform 3D grid on the universe.
• For each input primitive — cube, face, edge — find overlapping cells.
• In each cell, store set of overlapping primitives.

Properties
• Simple, sparse, uses little memory if well programmed.
• Parallelizable.
• Robust against moderate data nonuniformities.
• Bad worst-case performance: defeatable by extremely nonuniform data.
• Ditto any hierarchical method like octree.

Advantage
• Intersecting primitives must occupy the same cell.
• The grid filters the set of possible intersections.
Optimization to prune objects before pairwise intersection tests.

• Only visible intersections contribute to the output.
• That’s often a small fraction - inefficient.
• Solution: add the cubes themselves to the grid.
Adding the Cubes Themselves to the Grid

• For each cube, find cells it completely covers.
• When cell completely covered by a cube: nothing in that cube can contribute to the output. So:
 • Find covered cells first.
 • Do not insert objects into covered cells.
 • Intersect pairs and triples of objects in non-covered cells.

When cell size somewhat smaller than edge size, almost no hidden intersections found. Good.
Expected time = \(\theta(\text{size(input)} + \text{size(useful intersections)}) \).
Filter Possible Intersections

... by superimposing a uniform grid on the scene.

- For each input primitive (cube, face, edge), find which cells it overlaps.
- With each cell, store the set of overlapping primitives.
- Expected time = (size(input) + size(useful intersections)).
Uniform Grid Qualities

- Major disadvantage: It’s so simple that it apparently cannot work, especially for nonuniform data.
- Major advantage: For the operations I want to do (intersection, containment, etc), it works very well for any real data I’ve ever tried.
Show that time to find edge–edge intersections in E^2 is linear in input+output size regardless of varying number of edges per cell.

- N edges, length L, $G \times G$ grid, η edges per cell.
- $\eta = \lambda \eta = \frac{N}{G^2} (LG + 1)$
- Poisson distribution, parameter $\lambda \eta$.
- Expected number of edge–edge tests: $\overline{\eta^2 - \eta}$
- $\eta = \lambda \eta$ and $\overline{\eta^2} = \lambda \eta^2 + \lambda \eta$.
- Expected number of intersection tests per cell: $\lambda \eta^2 = \frac{N^2}{G^4} (LG + 1)^2$
- Expected total number of intersection tests, over the G^2 cells: $\frac{N^2}{G^2} (LG + 1)^2$.
- Total time: insert edges into cells + test for intersections $T = \Theta \left(N(LG + 1) + \frac{N^2}{G^2} (LG + 1)^2 \right)$.
- Minimized when $G = \Theta(1/L)$, giving $T = \Theta \left(N + N^2L^2 \right)$.
- Q.E.D.
Face–Face–Face Intersection Details

- Iterate over grid cells.
- In each cell, test all triples of faces, each from a different cube.
- Three faces intersect if their planes intersect, and the intersection is inside each face (2D point containment).
- Then look up s_i in a table and update accumulating volume.
- Implementation easier for cubes.
Point Containment Testing

• P is a possible vertex of the output union polyhedron.
• Is point P contained in any input cube?

Answer:
• Find which cell, C, contains P.
• If C is completely covered by some cube then P is inside the covering cube.
• Otherwise, test P against all the cubes that overlap C.
• Expected number of such cubes is constant, under broad conditions.
• Expect test time per P: constant.
Face–Face–Face Intersection Execution Time

- N: number of cubes
- L: edge length, $1 \times 1 \times 1$ universe.
- Expected number of 3-face intersections = $\theta(N^3L^6)$.

Effect of Grid
- Choose G: number of grid cells on a side = $2/L$.
- Number of face triples: N^3
- Prob. of a 3-face test succeeding = $N^{-2}L^6$.
- Depending on asymptotic behavior of $L(N)$, this tends to 0.
- Prob. of 3 tested faces actually intersecting = c, indep. of N and $L(N)$.
- Big improvement!

Effect of Covered Cells
- Expected number of 3-face intersections = $\theta(N^3L^6)$.
- However, for uniform i.i.d. input, expected visible number: $\theta(N)$.
- Prob. computed intersection is visible = c, indep. of N and $L(N)$.
- Time to test if a point is inside any cube also constant.
- Total time reduces to $\theta(N)$.
(In progress)

- Can’t slice up the input spatially: increases area edge length.
- Inserting objects into cells quicker than intersection testing.
- Solution:
 - Insert \{cubes, faces, edges\} into the cells.
 - Distribute cells among threads.
- Each thread reads much data, but writes only 3 words: its contribution to the volume, area, length.
Implementation

• Very compact data structures.
• Linear congruential rng not random for geometry, so use:
 • Random (Tausworth generator) uniform i.i.d. cubes.
• 1000 executable lines of C++.
• Run on dual 3.4GHx Xeon, 128GB memory.
• Small Datasets are Fast: $N = 10^4$, $L = 1/20$, $G = 40$: $T=0.64s$, $V=0.676$, $A=40$.
• Medium: $N = 10^6$, $L = 1/100$, $G = 200$: $T=37s$, $V=0.6$, $A=222$. 3,125,877 output vertices, 2,775,644 face-face-face intersections.
• Large Datasets are Feasible: $N = 10^7$, $L = 1/200$, $G = 400$: $T=395s$, $V=0.685$, $A=443$. 24,868,405 output vertices, 33,996,760 face-face-face intersections.
It compiles and runs w/o crashing; why look for trouble?

- Terms summed for volume are large and mostly cancel.
 - Errors unlikely to total to a number in \([0,1]\).
- Expected volume: \(1 - (1 - L^3)^N\).
 - Compare to computed volume.
 - Assume that coincidental equivalence is unlikely.
- Construct specific, maybe degenerate, examples with known volume.
Extensions

To general boolean ops:
• Intersection of many convex polyhedra quite easy.
• Any boolean op expressible as union of intersections (common technique in logic design for computer HW).

To general polyhedra:
• Formulae are messier.
• Roundoff error would be biggest problem.
• Fatal to miss an intersection.
• Compute using rationals, perhaps with CGAL.
• Time cost: factor of 100?

Testing polyhedron validity: Illegal volume or volume change after rigid transformation → invalid.
Guiding principles:

- Use minimal possible topology, and compact data structures.
- Short circuit the evaluation of volume(union(cubes)).
- Design for expected, not worst, case input.
- External data structures unnecessary, tho possible.

Allows very large datasets to be processed quickly in 3-D.