
Fast exact parallel map overlay using a two-level uniform
grid

Salles V. G. Magalhães
Rensselaer Polytechnic Inst.

Troy, NY, USA
salles@ufv.br

Marcus V. A. Andrade
Universidade Fed. de Viçosa

Viçosa, MG, Brazil
marcus@ufv.br

W. Randolph Franklin
Rensselaer Polytechnic Inst.

Troy, NY, USA
mail@wrfranklin.org

Wenli Li
Rensselaer Polytechnic Inst.

Troy, NY, USA
liw9@rpi.edu

ABSTRACT
We present EPUG-Overlay (Exact Parallel Uniform Grid
Overlay), an algorithm to overlay two maps that is fast
and parallel, has no roundoff errors, and is freely available.
EPUG-Overlay combines several novel aspects. It repre-
sents coordinates with rational numbers, thereby ensuring
exact computations with no roundoff errors and the ensu-
ing sliver problems and topological impossibilities. For effi-
ciency, EPUG-Overlay performs the map overlay in paral-
lel, thereby utilizing the ubiquitous multicore architecture.
Our application goes beyond merely using existing packages,
which are inefficient when used in parallel on large prob-
lems. Indeed, overlaying two maps with 53,000,000 edges
and 730,000 faces took only 322 elapsed seconds (plus 116
seconds for I/O) on a dual 8-core 3.1 GHz Intel Xeon E5-2687
workstation. In contrast, GRASS, executing sequentially and
generating roundoff errors, takes 5300 seconds.

The overlay operation combines two input maps (planar
graphs) containing faces (polygons) separated by polyline
edges (chains), into a new map, each of whose faces is the
intersection of one face from each input map. Floating point
roundoff errors can cause an edge intersection to be missed or
the computed intersection point be in a wrong face, leading
to a topological inconsistency. Thus, a program might fail
to compute a valid output map at all, using any amount of
time. This gets worse when the inputs are bigger or have
slivers. Heuristics can ameliorate this problem, but only to
an extent.

By representing each coordinate as a vulgar fraction, with
multiprecision numerator and denominator, the computation
is exact. EPUG-Overlay also executes various useful sub-
problems very quickly, such as locating a set of points in a
planar graph and finding all the intersections among a large

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
23rd ACM SIGSPATIAL International Conference on Advances in Geo-
graphic Information Systems (ACM SIGSPATIAL) 2015 Seattle, WA, USA
Copyright 2015 ACM ISBN 978-1-4503-3132-6 ...$15.00

set of small edges. EPUG-Overlay is built on our earlier se-
quential floating-point algorithm that found the areas of the
overlay polygons, without finding the polygons themselves.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Geo-
metrical problems and computations

General Terms
Algorithms, Experimentation, Performance

Keywords
Map Overlay, Exact Computation, Parallel algorithm, Big
Data

1. INTRODUCTION
A map is a partition of the E2 plane into a finite number
of faces or polygons. Let the faces of map A be called ai.
Excepting the exterior face, each face has finite extent. The
overlay of two maps A and B is a new map C. Each face of
C is the intersection of one face of A with one face of B. For
example, let A be the map of coterminous states of the USA
and B be a map of river watersheds. Face c0 might be the
part of the Hudson River watershed in New York State, and
c1 might be the part of the Connecticut River watershed in
Vermont. Figure 1 shows a simple example.

Map overlay is a classical problem with many applications
in Computational Geometry, Computational Cartography
and Geographic Information Science (GIS) [9, 12,15,31,38].
Sometimes, the special case of triangulation overlay is con-
sidered [37] (an excellent survey of various surface represen-
tations and algorithms). Map overlay can also be embed-
ded into higher-level algorithms such as interpolating from
known county populations to estimated watershed popula-
tions [13,16].

A common algorithm is the plane sweep paradigm [11, 26,
31, 39] but, as stated by Audet et al. [3]: “the plane sweep
strategy does not parallelize efficiently, rendering it inca-
pable of benefiting from recent trends of multicore CPUs and
general-purpose GPUs”.

+

Figure 1: Map overlay example.

Other map overlay algorithms use a special data structure,
such as an R-Tree [5,38], QuadTree [6,34], or Uniform Grid [16].
The basic idea is a spatial sort to reduce the number of pairs
of edges to be tested for intersection, since only segments
that are in the same cell of a data structure need to be tested
against each other.

Tree-based data structures are suboptimal in various respects.
They usually use pointers, which may require more space
than the data. Chasing pointers slows down data retrieval.
The code to walk down a tree is not straight line and so is
not optimal when executed on a pipeline processor, which
all modern processors are. Trees that branch out a factor
of 4 at each level need too many levels to store hundreds of
millions of edges. Trees are suboptimal for both data-level
parallelism and instruction-level parallelism.

More complex trees can ameliorate some of these problems,
at a cost of more code. However, we prefer the uniform
grid as the simplest and most parallelizable. The uniform
grid is usually overlooked because of the assumption that
it works well only with uniformly distributed data, even
though the converse has been shown, both theoretically and
experimentally.

An important challenge is avoiding topological inconsisten-
cies caused by floating-point arithmetic’s roundoff errors.
Heuristical solutions include using an ε tolerance or snap
rounding. These work up to a point. However, as datasets
become larger, the chance of these heuristics failing increases.
Any chance of a failure prevents map overlay from being used
as a guaranteed subroutine in a larger system.

In this paper, we prevent roundoff errors by using exact
computation in the algebraic field of rational numbers with
arbitrary precision [24,28,40]. Instead of using floating point
numbers, we represent each coordinate as the ratio of two
integers, each of which is stored with as many digits as nec-
essary. An example 2-D point is

(
123
4567

, 8901
2345

)
. Since rational

numbers are not a default data class in programming lan-
guages like C++, we use a library such as GMP, the GNU
Multi-Precision library [18]. GMP overloads the operators
+,−,×,÷ so that mathematical expressions can be coded as
usual. The cost is that computation is slower and variables
take more space. However, this is quite tolerable.

A second problem with map overlay is the increasing volume
of data to be processed. For example, NASA’s Earth Obser-
vatory System (EOS) satellites collect about 1 TB of spatial
data every day. This data is stored by the Earth Observing
Systems Data and Information System (EOSDIS), whose size

is more than 3 petabytes [33]. More recent is the huge volume
of data collected by GPS-enabled mobile devices. Therefore,
map overlay can be thought of as a Big Data application,
and optimizing execution time and space becomes critical.

As databases get larger, the probability of a geometric de-
generacy, such as a vertex of one map incident on an edge on
the other map, increases. Degeneracies increase the number
of cases to handle for any predicate. The low level predicates
must be resolved in a way that keeps higher level predi-
cates consistent. We solve this with Simulation of Simplicity
(SoS) [10].

Properly optimizing execution time and space requires ex-
ploiting the capabilities of current hardware. The first capa-
bility is the universality of multi-core processors. Single-core
processors scarcely exist today; even smart phones have sev-
eral cores. A good Intel Xeon processor with hyperthreading
can simultaneously execute 16 threads on its 8 cores. Today,
algorithms that are not parallelizable risk becoming quaint
curiosities. Going further, a large fraction of computers have
programmable GPUs, such as from Nvidia [32], or the MIC -
Many Integrated Core by Intel [22]. Those provide massive
parallelism with up to thousands of cores, e.g., 4992 CUDA
cores for the best Nvidia GPU as of June 2015, the Tesla K80.
The drawback is that each Nvidia CUDA core is perhaps
only 5% as powerful as an Intel core, and the programming
is much harder.

The second capability of current hardware is the massive
amount of main memory. Workstations with a terabyte of
main memory are becoming common. Even a high-end GPU,
such as the K80, contains 24GB of memory. So, why artifi-
cially restrict an algorithm to use only a few GB of internal
memory?

Nevertheless, these powerful capabilities come with the cost
of a preference for simple regular data structures with few
pointers. Data movement often takes more time than com-
putation. The processor’s execution pipeline has many steps,
and anything unpredictable that causes it to flush, such as
an unusual memory access, increases the time.

This paper combines the above two themes (prevent roundoff
errors and exploit current hardware) as follows. It presents
EPUG-Overlay (Exact Parallel Uniform Grid Overlay),
a very fast, parallel map overlay algorithm using rational
numbers. When processing the largest available datasets with
millions of edges (the sequential version of) EPUG-Overlay
uses 50% less elapsed time than GRASS does using floats.
The source code of EPUG-Overlay is freely available for

nonprofit research and education; we welcome mashups with
other software.

EPUG-Overlay is fast because of its use of implied global
topology and its novel 2-level uniform grid. It is implemented
in C++, whose user-defined classes and overloadable oper-
ators make using rational numbers feasible. Parallelization
on a shared memory multicore workstation is achieved with
OpenMP. OpenMP is a set of pragmas added to a C++ pro-
gram to mark how for -loops are to be parallelized, and what
code blocks must be serialized. There is also an efficient par-
allel reduction facility, to total an addend from each thread.
The hard part is designing the algorithm so that a for -loop’s
iterations are independent of each other, and that writes
to global memory are minimized, since they must often be
serialized.

The largest test case for EPUG-Overlay (using big ratio-
nals) overlaid two maps: one having 32 million edges and 220
thousands faces with another map having 21 million edges and
519 thousands faces in 438 elapsed seconds using 32 threads
with dual 8-core 3.1 GHz Intel Xeon E5-2687 processors. That
is a factor of 6 speedup compared to using one thread. By
comparison, GRASS (using roundoff-error-prone floats), took
5300 seconds, partly because it is only single-threaded. (How-
ever, even when using only one thread, EPUG-Overlay is
still faster than GRASS.) Geometric Performance Primitives
(GPP), the commercial product described in [3] also uses a
uniform grid to compute map overlays in parallel . However
it computes with floats, and must ameliorate the resulting
roundoff errors with snap rounding, which can change the
maps’ topology.

2. BACKGROUND
2.1 Map representation
This paper represents a map as a planar graph, with faces
bounded by edges and vertices, each face labeled with an
identification number. A face need not be a connected set. For
example, a face representing Spain would include the exclave
Llivia. Perhaps the most extreme example is Baarle-Nassau
and Baarle-Hertog [36]. By convention, a map’s exterior face
is 0.

A chain is a sequence of edges with the same adjacent faces.
(Grouping edges into chains is done only for efficiency.) Each
chain has the following header: (l, ne, v0, v1, fl, fr), with l the
chain label, ne the number of edges in the chain, v0 and v1
respectively the initial and final vertices, and fl and fr the
left and right adjacent faces. Each chain header is followed
by the ne + 1 coordinates of its vertices.

Since our algorithm does not need it, faces are not explicitly
stored. That is, the topology is represented implicitly. Figure 2
presents an example of a map composed of 2 faces (one with
two connected components) and the corresponding chains
that are used to represent this map.

2.2 Two-level uniform grid
Franklin et al [17] proposed a uniform grid to accelerate map
overlay. The basic idea is to superimpose a grid over the
input maps. For each edge, the set of incident grid cells is
determined. This implementation uses a C++ vector for each

Chains:

(1,4,v1,v4,2,0)

(x1,y1);(x6,y6);(x5,y5);(x4,y4)

(2,2,v1,v4,1,2)

(x1,y1);(x4,y4)

(3,4,v1,v4,0,1)

(x1,y1);(x2,y2);(x3,y3);(x4,y4)

(4,5,v7,v7,0,2)

(x7,y7);(x8,y8);(x9,y9);(x10,y10);(x7,y7)

face 0
v1

v2

v3v4

v5

v6
v7

v8

v9

v10

face 1

face 2

face 2

Figure 2: A map’s faces and chains.

cell to record the edges incident on it. (Another implementa-
tion choice would be a ragged array.) Then, for each cell, the
edges in that cell are compared pair-by-pair (one edge from
each map) to find which pairs intersect.

If the edges are uniformly independently and identically
distributed, then the number of edges in a cell is a random
Poisson variable. The time to process a cell is the square
of the number of edges. With the Poisson distribution, the
mean of the square is equal to the square of the mean. If
the grid size is chosen so that the number of edges per cell
remains constant as the total number of edges grows, then
the expected time to find all the intersections is linear in the
number of edges plus the number of intersections, i.e., linear
in the size of the input plus the output.

When overlaying two maps, we need only the intersections
between an edge of one map with an edge of the other. So, if
a cell contains many edges from one map but few (or none)
from the other, the process is even more efficient. In contrast,
the plane sweep edge intersection algorithm must process all
the intersections within at least one map (the red-blue edge
intersection problem), which is much slower.

The uniform grid works well even for uneven data for various
reasons [2, 8, 14,15]. First, the total time is the sum of one
component (inserting edges into cells) that runs slower with a
finer grid, plus another component (intersecting edges in cells)
that runs faster. The sum varies only slowly with changing
grid size. Second, an empty grid cell is very inexpensive, so
that sizing the grid for the dense part of the data works.
Nevertheless, to process very uneven data, in this project we
have incorporated a second level grid into those few cells with
over 50 pairs of edges. (The exact value is not important.)

Figure 3 presents an example with two maps superposing this
2-level uniform grid. In this example, the first level has 4× 7
cells and the second level (created in those first level cells
having more than 2 pairs of edges that need to be checked)
was created with 3× 3 cells.

This nesting could be recursively repeated until all grid cells
have less elements than a given threshold, creating a structure
similar to quadtree, although with more branching at each
level. Our solution could be considered a special case of that.
However, as mentioned earlier, the general solution uses more
space for pointers (or is expensive to modify) and is irregular
enough that parallelization is difficult. Also, for map overlay,
our tests have shown that the best performance is achieved
using just a second level. This can be explained because the
first level grid, in general, has many cells with more elements

Figure 3: Two-level uniform grid with 4×7 first level
and 3×3 second level (created in first level cells con-
taining more than 2 edges).

than the threshold justifying the second level refinement. But,
in the second level, only a few number of cells exceed the
threshold and the overhead (processing time and memory
use) to refine those cells is never recaptured.

2.3 Roundoff error problems in map opera-
tions

Most computer programs represent non-integer numbers us-
ing floating point numbers with a fixed number of bits. In
general, non-integer numbers can not be represented exactly,
and the difference between the actual value of a non-integer
number and its approximate floating point representation is
referred to as roundoff error or rounding error. Worse, arith-
metic operations generate further roundoff errors. Commonly,
these errors are small, but in a long sequence of operations,
the accumulated error can be large and can generate serious
problems for the final result.

More formally, the floating point representation is an ap-
proximation to an algebraic field of real numbers, which
is defined by 11 axioms, such as associativity of addition,
a+(b+c) = (a+b)+c. Unfortunately, floating point numbers
satisfy almost none of the real number axioms. Associativity
of addition is not true when a = 1030, b = −1030, c = 1
because −1030 + 1 rounds to −1030, so that a+ (b+ c) = 0
but (a + b) + c = 1. An excellent source for information
about such problems of numerical computation, by one of
the authors of the IEEE 754 floating point standard, is Wm
Kahan’s web site [23].

Roundoff errors have had serious consequences in many fields,
such as: the failure of the first Ariane V rocket [1], the failure
of the Patriot missile defense system resulting in 28 people
killed [35], and spurious declining values in the Vancouver
stock exchange index [29]. In geometry, roundoff errors can
generate topological inconsistencies causing globally impossi-
ble results for predicates like point inside polygon and 3-point
orientation.

Several techniques have been proposed in order to overcome
this problem. The simplest one consists of using an ε toler-
ance to consider two values x and y are equal if |x− y| ≤ ε.
However this is a formal mess because equality is no longer
transitive, nor invariant under scaling. Simply using double
precision works for awhile. GMPXX [18] also has a multi-
ple precision floating point class, albeit much slower than

(a) (b)

Figure 4: Snap rounding: (a) Initial set of segments.
(b) Arrangement after the snap rounding execution:
each segment endpoint and each intersection point
has been snapped to the pixel center.

builtin double precision. Boissonat [4] describes a robust
implementation of the plane sweep approach for intersect-
ing segments using triple of the precision of the input data.
Li [27] presents the Exact Geometric Computation (EGC)
model, which represents mathematical objects using alge-
braic numbers to perform computations without errors. By
definition, an algebraic number is the root of an univariate
polynomial with integer coefficients. For instance, the number√

2 has no finite representation, but it can be represented
exactly as the pair (x2 − 2, [1, 2]), interpreted as the root of
the polynomial x2 − 2 that lies in the interval [1, 2]. This
model has some interesting features but its main drawback
is the performance penalty. Even determining the sign of an
expression is nontrivial.

Controlled Perturbation (CP), [30] is another approach, based
on the use of finite precision approximation techniques. The
basic idea is to slightly perturb the input in a controlled man-
ner to remove all degeneracies and such that all the geometric
predicates are correctly evaluated even using floating-point
arithmetic.

Another technique that also is based on finite precision ap-
proximation is snap rounding (SP) [20], whose basic idea
is to use some rounding method to convert an arbitrary
precision arrangement of segments into a fixed-precision rep-
resentation. Snap rounding has been used in GIS packages
such as [3, 7, 19], but it can generate some inconsistencies by
changing the topology - for example, see Figure 4.

2.4 Exact computation using rational numbers
The formally proper way to effectively eliminate roundoff
errors and guarantee algorithm robustness is to use exact
computation based on rational number with arbitrary preci-
sion [21,24,28].

Computing in the algebraic field of the rational numbers
over the integers, with the integers allowed to grow as long
as necessary, allows the traditional arithmetic operations,
+,−,×,÷, to be computed exactly, with no roundoff error.
The cost is that the number of digits in the result of an
operation is about equal to the sum of the numbers of digits
in the two inputs. E.g., 214

433
+ 659

781
= 452481

338173
.

Casting out common factors helps, but that is rarely possible.
E.g., we can cast out a common factor of two when the
numerator and denominator are both even — 1/4 of the
time.

This paper ameliorates the slowness of rational numbers
with an algorithm that is efficient enough to compute with
rationals in less time than the widely used GRASS routine
can with floats.

3. THE ALGORITHM
EPUG-Overlay reads input two maps and if necessary
the vertices coordinates are converted to rational using the
GMP (overloaded) operand. This operand automatically
uses the required precision to represent the number exactly.
(Another strategy to convert float to a rational is to use a
continued fraction to find the simplest rational within some
given tolerance, such as one half the least significant bit.)

Algorithm 1 summarizes the overlay process; the next sections
give details.

Algorithm 1 Computes the overlay of two maps A and B
given as input.

1: Create the 2-level uniform grid
2: Compute the intersection points between all edges of

maps A and B
3: Locate all vertices of map A in map B and vice-versa
4: Create the resulting map

Our reported times are elapsed times, that is wall clock times.
For parallel computation, reporting total CPU time is mean-
ingless because it does not capture the parallelization’s effec-
tiveness. That is, does an algorithm taking 1 CPU-minute,
run sequentially in 1 elapsed minute, or does it run on 30 par-
allel threads, taking 2 seconds on each, finishing in 2 elapsed
seconds? Elapsed time is not susceptible to that ambiguity.
This also avoids technical difficulties with reliably measuring
CPU times for parallel threads.

3.1 Exploiting global topology
When computing a map C corresponding to the overlay of
maps A and B, each of whose faces is the intersection of a
pair of faces, one each from map A and map B, the obvious
solution is to intersect each face from map A with each face
from B, and report the non-empty intersections. We do not
do that.

Instead, we exploit the fact that a face’s boundary is a set
of edges, and look for edge intersections. This has several
advantages. First, it’s easier to test a pair of edges for pos-
sible intersection than to test a pair of faces (which would
devolve to testing pairs of edges anyway). Second, knowing
an intersection of a pair of edges contributes information
about four output faces. Third, as an edge is fixed size but a
face is not, parallel operations on edges are more efficient.

3.2 Creating the two-level uniform grid
Choosing the size of a uniform grid, that is the number of
cells on each side gives the user an opportunity to trade off
speed and size. Section 4 presents some experiments showing
this tradeoff. The exact grid size is not too important for the
time because varying it a factor of two in either direction
from the optimum often increases the time by much less than
50%. Therefore, we used a conservative empirical formula for
the grid size that gave a good execution time and a feasible
memory size.

Determining which grid cells contain each edge can be paral-
lelized over the edges, although inserting them into the grid
structure must be serialized, e.g. with an atomic increment-
and-copy operation on the count of edges in the cell.

Next, for the few cells where more than, say, 50 pairs of edges
will need to be tested, we add a 40×40 second level grid (the
exact size is not critical) — more details are in Section 4.

This is also completely parallelizable.

3.3 Computing the intersection points
The next step is a parallel iteration over all the grid cells. In
each cell, we test each edge of map A in the cell against each
edge of B in that cell. This process is extremely parallelizable
since the cells do not influence each other.

Degenerate cases are handled with Simulation of Simplicity
(SoS) [10]. The idea is to pretend that map A is slightly below
and to the left of map B. Thus no edge from A will coincide
with an edge from B during the intersection computation.
Oversimplified slightly, the process proceeds by translating
map B by (ε, ε2), where ε is an infinitesimal that is smaller
than any positive real number. The second order infinitesimal
ε2 is smaller than any positive finite multiple of the first order
infinitesimal ε. Such a number system can be axiomatized
and is consistent [25]. We do not actually compute with
infinitesimals, but instead determine the effect that they
would have on the predicates in the code, and modify the
predicates to have the same effect when evaluated as if the
variables could have infinitesimal values. For instance, the
test for (a0 ≤ b0)&(b0 ≤ a1) becomes (a0 ≤ b0)&(b0 < a1).
With SoS, no point in A is identical to any point in B, neither
is any point in A on any edge in B, nor do two any edges
coincide.

Using SoS to resolve degeneracies is a solution that generalizes
up. If we use it to test whether two edges intersect, we can
utilize that function in a test of whether two chains intersect,
and get topologically valid results. E.g., if two chains cross
at a common vertex, we will get a total of either one or three
edge-edge intersections, even though our edge intersection
function knows nothing about chains.

3.4 Locating one map’s vertices in the other
The third step is to determine which face of map A contains
each vertex of map B and vice-versa. When a vertex is on an
edge, SoS puts it into exactly one of the two adjacent faces
in a way that later will produce a consistent answer.

The idea is to run a semi-infinite ray up from vertex v of A,
to find the lowest edge e of B that it hits. Then, v is in one

of the adjacent faces of e, which one depending on whether
the ray hits e from the left or the right. Because of SoS, if e
is vertical then no rays will ever hit it.

The process is very fast with our grid. Assume that it is sized
so that the expected number of edges per cell is constant.
Determining which cell c contains v takes constant time.
Testing the ray against all the edges in c takes constant
time. If the ray hits at least one edge, then we know the face.
However there is a probability p that it does not. Because
the expected number of edges in c is constant, so also p is
a constant independent of the map size. Then we continue
the ray into the next higher cell and test for an intersecting
edge. The expected number of cells to process until we find
an intersecting edge is 1/(1− p). If we fall off the top of the
grid without finding an intersecting edge, then v is inside B’s
exterior face, i.e., face 0.

For example, in Figure 5, we have to follow the ray up through
three cells until it hits edge e = (u,w).

v

u

w

r

Figure 5: Determining the face containing a vertex.

The expected time to locate a point in a map is constant,
independent of the map’s size.

3.5 Constructing the resulting map
It is possible that edge e of map A does not intersect any
edge of map B. Then e is completely inside one face (perhaps
face 0) of B. It is even possible that no edge of A intersects
any edge of B.

If e is inside a face that is not the outside face (i.e. face 0),
e will be an edge of the resulting map. Otherwise, if e is
outside (i.e. inside the face 0), e will not be an edge of the
resulting map. For example, in Figure 6, the edge e from
map A (represented by dotted lines) is inside face B1 (the
face 1 of map B represented by solid lines). Thus, e will be
an edge of the resulting map having as adjacent faces: one
face resulting from the intersection between faces A1 and B1

and the outside face resulting from the intersection of faces
B1 and A0 (the outside face of map A). On the other hand,
the edge f will not be in the resulting map since it is outside
the map A (it is inside face A0).

Furthermore, an edge can intersect one (or more) edges of the
other map. Let e = (u,w) be an intersecting edge and suppose
that e intersects k ≥ 1 edges of the other map and that the
intersection points are i1, i2, ..., ik. Then, e is subdivided into
k + 1 non-intersecting edges e1 = (u, i1), e2 = (i1, i2), e3 =
(i2, i3), ...ek = (ik−1, ik), ek+1 = (ik, w). To determine which

e

A1

fB1

B0

A0

Figure 6: Two maps with no edge intersection.

of these (new) edges will be included in the resulting map,
the midpoint mj of each edge ej is analyzed: if mj is outside
the other map, ej will not be in the resulting map. Otherwise,
if mj is inside a face g of the other map, ej will be in the
resulting map since the faces in both sides of ej will intersect
with g.

Figure 7 presents an example of an edge e = (u,w) from map
A (represented by dotted line) that intersects more than one
edge from map B (solid lines). In this case, the new edge
e3 = (i2, i3) has midpoint m3 that is inside face B2. Since
the face in the right and left sides of (original edge) e were,
respectively, A1 and A0, the face in the right side of e3 will
be the new face obtained from the intersection of face A1

with B2 and the face in the left side of e3 will be the outside
face that results from the intersection A0 with B2. The edge
e5 = (i4, w), on the other hand, will not be in the resulting
map since its midpoint m5 is outside map B.

B1

A1

B2 B3

u
w

i1 i2
i3 i4m3

m5

B0

A0

Figure 7: Example of an edge of map A intersecting
more than one edge of map B.

3.6 Parallel implementation
We implemented EPUG-Overlay in parallel using a shared-
memory architecture with the OpenMP API. The edges are
processed in parallel to determine the cells incident on each
edge. We use an atomic lock to serialize the edge insertion
into the uniform grid. Other, more complicated, solutions are
possible, such as having each thread accumulate results into
a private array and then merging them. That is not necessary
here since this step’s cost is small enough.

The next step, edge intersection is parallelized over the grid
cells as mentioned in section 3.3. We also parallelize locating
the vertices of each map in the other map’s faces. Finally, the
output faces are computed by processing the output edges in
parallel. Since these three steps were designed to be processed
without data dependency, they can be easily parallelizable.

4. EXPERIMENTAL RESULTS
We implemented EPUG-Overlay in C++ and OpenMP
using the multiple precision arithmetic package GMPXX [18].
It was compiled with g++ 4.8.2 and tested on a workstation
with dual Intel Xeon E5-2687 processors, each with 8 physical
cores, each core able to run 2 threads using the Intel Hyper-
threading technology. The workstation has 128 GiB of RAM
memory and runs the Linux 3.16 Mint 17 operating system.

The tests were performed using six datasets: two from Brazil,
distributed by IBGE (the Brazilian geography agency) and
four from the United States, obtained from the ArcGIS,
United States Census and National Atlas webpages:

· BrSoil : kinds of soils in Brazil.

· BrCounty : Brazilian counties.

· UsAquifers: US aquifers.

· UsCounty : US counties.

· UsWaterBodies: the surface drainage system of the United
States.

· UsBlockBoundaries: 2010 United States Census block
groups.

Table 1 gives statistics. After conversion to the representation
described in section 2.1, we did these overlay tests:

· BrSoil with BrCounty,

· UsAquifers with UsCounty, and

· UsWaterBodies with UsBlockBoundaries.

4.1 Algorithm performance
First we tested the effect of different grid sizes; see Table 2.
The threshold for refining a first level cell was 50 pairs of
edges.

The performance depends on the grid size, mainly the first
level size. We propose the following expression to define a
conservative value for the first level grid size to balance the
elapsed time and the memory usage:

d = 4

√
nA × nB

m
(1)

where nA and nB are respectively the number of edges in
map A and B, and m is the number of pairs of edges that is
intended to be inside of each grid cell (in all tests, we selected
m = 50). Thus, the grid size d is rounded to a simple multiple
of a power of ten (for readability since the optimum is so
broad). Based on other experiments, we always use a 40× 40
second level.

Table 3 shows the quality of EPUG-Overlay’s implementa-
tion with the design choices described above. The table gives
the elapsed times for our three large test cases. The times
are given for each of the program’s seven stages, both when
using one thread and when using 32 threads (on the 16 core
hyperthreaded workstation).

Excluding the I/O time, the total parallel speedup on the
largest case is a factor of 11. (It is less than 32 because
operations like memory allocation and writing to a common
global array are sequential, and because hyperthreading can

run two simultaneous threads on one core only when they
are not competing for a scarce resource.)

Even the sequential version of EPUG-Overlay is very
competitive compared to other overlay programs. E.g., the
GRASS GIS [19] overlay (sequential) module that uses float-
ing point (and thus, does not compute the exact overlay)
takes 5321 seconds to overlay UsWaterBodies with UsBlock-
Boundaries while the sequential version of EPUG-Overlay
uses only 2291 seconds (including I/O) with a 5000× 5000
1st-level grid and 40× 40 2nd-level grid, or 3512 seconds (in-
cluding I/O) using a more conservative 1st-level grid size of
2000 × 2000 cells. Of course, its important to notice that
the GRASS running time includes some systems overheads
associated with the GIS environment.

Thus, the overhead added by using exact arithmetic can be
balanced by using a simple data structure.

4.2 The two-level uniform grid relevance
In this section we will present some results to show the
relevance of using a two-level uniform grid instead of a con-
ventional uniform grid or a Quadtree.

Firstly, the main purpose for using a data structure in map
overlay is to try to reduce the number of segment pairs
that needs to be checked to verify if they intersect. For
example, Figure 8 presents some statistics for overlaying
maps UsWaterBodies with UsBlockBoundaries using a 2-
level uniform grid with 2000 × 2000 cells in the first level,
40× 40 cells in the second one and 50 as the threshold. After
the 1-level uniform grid creation, see Figure 8(a), there are
20000 cells with over 10000 pairs of edges to be checked.
Then, it would be necessary to check more than 2× 108 edge
pairs. Nevertheless, with a second level, see Figure 8(b), there
are now about only 100 cells with more than 10,000 pairs of
edges to be checked.

The next question is, why do not create a third level or do not
use a Quadtree? This is a bad idea because our tests found
that just creating a three-level uniform grid or a Quadtree
requires too much memory and takes more time than the
whole process to overlay the two maps using a 2-level uniform
grid. For example, Table 4 shows the time (in seconds) and
the memory required just to create a three-level uniform grid
and a Quadtree for the three datasets used in the tests (the
threshold for creating another branch in these structures was
set to 50 pairs of edges). In all cases, just the grid creation
spent more time than the EPUG-Overlay processing time
presented in Table 2.

5. CONCLUSION AND FUTURE WORK
We have presented EPUG-Overlay, an efficient algorithm,
with implementation, using rational numbers to compute
the exact overlay between two maps. Even though EPUG-
Overlay performs computation using multiple precision
rational arithmetic, which is much slower than hardware-
implemented floating point, its performance is competitive
(more than 2 times faster) to the approximate overlay method
included in the widely used GRASS GIS.

Furthermore, EPUG-Overlay is eminently parallelizable.
On the largest test case, with OpenMP, we achieved a speedup

Table 1: Experiment datasets

(a) Input maps

Size
Dataset Vertices Edges Faces (GB)
BrSoil 258,961 251,011 5,567 0.03
BrCounty 342,738 326,193 2,959 0.04
UsAquifers 358,551 352,924 3,235 0.04
UsCounty 3,645,559 3,636,347 3,552 0.37
UsWaterBodies 21,652,410 21,060,354 219,831 2.25
UsBlockBoundaries 32,762,740 32,103,306 518,837 3.40

(b) Resulting maps.

Size
Dataset Vertices Edges Faces (GB)
BrSoil × BrCounty 581,554 608,912 19,400 0.07
UsAquifers × UsCounty 3,893,336 3,905,784 10,107 0.45
UsWaterBodies × UsBlockBoundaries 24,078,779 24,287,841 580,943 2.45

Table 2: Elapsed time in seconds (excluding I/O) and memory usage of EPUG-Overlay using different grid
sizes for the first and second level. Columns 1 and 32 present the times using 1 and 32 threads respectively.

BrSoil × BrCounty UsAq. × UsCounty UsWBodies × UsBBound.

Grid Size Time (s) Mem Grid Size Time (s) Mem Grid Size Time (s) Mem
1st 2nd 1 32 (GB) 1st 2nd 1 32 (GB) 1st 2nd 1 32 (GB)

252 21 2 0.3 252 184 20 0.8 252 8260 640 9.0
1002 402 23 2 0.5 1002 402 172 19 0.8 10002 402 6183 491 9.6

552 24 2 0.8 552 167 18 0.9 552 5298 443 10.1

252 19 2 0.5 252 119 14 0.9 252 4060 357 10.0
2002 402 20 2 1.1 2002 402 117 14 1.1 20002 402 3398 322 11.6

552 24 2 1.9 552 117 14 1.3 552 3154 307 13.5

252 19 2 0.7 252 102 13 0.9 252 3045 307 11.2
3002 402 20 2 1.6 3002 402 100 12 1.2 30002 402 2735 282 14.1

552 25 3 2.7 552 101 13 1.6 552 2620 276 17.5

252 17 2 0.8 252 88 12 1.0 252 2520 284 12.6
4002 402 19 2 1.7 4002 402 88 12 1.4 40002 402 2424 273 16.5

552 24 3 2.8 552 92 12 1.9 552 2282 268 21.7

252 16 2 0.7 252 82 11 1.1 252 2255 282 14.0
5002 402 18 2 1.5 5002 402 84 11 1.6 50002 402 2127 273 19.4

552 22 2 2.4 552 85 11 2.2 552 2156 275 25.9

Table 3: Elapsed time of EPUG-Overlay with the grid size from Eqn. (1) using 1 and 32 threads.

Maps: BrSoil × BrCounty UsAq. × UsCounty UsWBodies × UsBBound.
Grid size: 200×200 400×400 2000×2000

Time (sec.) Parallel Time (sec.) Parallel Time (sec.) Parallel
Threads: 1 32 speedup 1 32 speedup 1 32 speedup

Read maps 1.0 1.0 1 5.3 5.5 1 73.1 74.5 1
Make grid 2.0 0.6 3 14.2 4.4 3 185.9 58.0 3

Refine 2-level grid 6.3 0.4 15 8.4 0.5 16 161.6 9.9 16
Intersect edges 1.0 0.1 8 2.6 0.3 8 505.5 30.9 16
Locate vertices 9.8 0.9 11 61.7 6.1 10 2434.7 211.6 12

Comp. output faces 0.5 0.1 4 0.9 0.2 5 110.4 11.8 9
Write output 1.0 0.6 2 4.5 4.6 1 40.4 41.6 1

Total w/o I/O 19.6 2.2 9 87.9 11.6 8 3398.1 322.2 11
Total with I/O 21.6 3.9 6 97.7 21.6 5 3511.6 438.3 8

Table 4: Elapsed time and memory size spent just to create a three-level uniform grid and a Quadtree using
32 threads.

3-level grid Quadtree

Maps overlaid 1st 2nd & 3rd Time (sec.) Size (GB) Time (sec.) Size (GB)

BrSoil × BrCounty 2002 402 54 1.1 70 1.7
UsAquifers × UsCounty 4002 402 472 1.5 440 2.5

UsWBodies × UsBBound. 20002 402 290 43.7 8312 15.5

(excluding I/O), of a factor of 11 compared with the sequential
implementation. And, we have ideas about how to make these
times even better, if there were a need.

We expect these techniques to extend to efficient and robust
parallel overlays of triangulations in E3 in the Computer
Aided Design and Computational Fluid Dynamics domains.

Acknowledgment
This research was partially supported by NSF grant IIS-
1117277, by CAPES (Ciencia sem Fronteiras) and FAPEMIG.

6. REFERENCES
[1] E. S. Agency. Ariane 501 inquiry board report.

http://ravel.esrin.esa.it/docs/esa-x-1819eng.pdf (accessed on
Jun-2015).

[2] V. Akman, W. R. Franklin, M. Kankanhalli, and
C. Narayanaswami. Geometric computing and the uniform
grid data technique. Comput. Aided Design, 21(7):410–420,
1989.

[3] S. Audet, C. Albertsson, M. Murase, and A. Asahara.
Robust and efficient polygon overlay on parallel stream
processors. In Proceedings of the 21st ACM SIGSPATIAL
International Conference on Advances in Geographic
Information Systems, SIGSPATIAL’13, pages 304–313, New
York, NY, USA, 2013. ACM.

[4] J.-D. Boissonnat and F. P. Preparata. Robust plane sweep
for intersecting segments. SIAM J. Comput.,
29(5):1401–1421, 2000.

[5] T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient
processing of spatial joins using r-trees. SIGMOD Rec.,
22(2):237–246, June 1993.

[6] F. W. Burton, V. J. Kollias, and J. G. Kollias. A general
pascal program for map overlay of quadtrees and related
problems. Comput. J., 30(4):355–361, Aug. 1987.

[7] Cgal, Computational Geometry Algorithms Library.
http://www.cgal.org (accessed on Jun-2015).

[8] L. Cucu, M. Dragan, V. Negru, and D. Mangu. Three
dimensional Delaunay triangulation using an uniform grid.
In 11th European Workshop Comput. Geom., pages 21–23.
Universität Linz, 1995.

[9] M. de Berg, H. Haverkort, S. Thite, and L. Toma.
I/o-efficient map overlay and point location in low-density
subdivisions. In T. Tokuyama, editor, Algorithms and
Computation, volume 4835 of Lecture Notes in Computer
Science, pages 500–511. Springer Berlin Heidelberg, 2007.

[10] H. Edelsbrunner and E. P. Mücke. Simulation of simplicity:
a technique to cope with degenerate cases in geometric
algorithms. ACM Transactions on Graphics (TOG),
9(1):66–104, 1990.

[11] U. Finke and K. Hinrichs. A spatial data model and a
topological sweep algorithm for map overlay. In D. Abel and
B. Chin Ooi, editors, Advances in Spatial Databases, volume
692 of Lecture Notes in Computer Science, pages 162–177.
Springer Berlin Heidelberg, 1993.

[12] A. U. Frank. Overlay processing in spatial information
systems. In Proceedings of Autocarto 8, pages 12–31, 1987.

[13] W. R. Franklin. Calculating map overlay polygon’ areas
without explicitly calculating the polygons —
implementation. In 4th International Symposium on Spatial
Data Handling, pages 151–160, Zürich, 23-27 July 1990.

[14] W. R. Franklin, N. Chandrasekhar, M. Kankanhalli,
M. Seshan, and V. Akman. Efficiency of uniform grids for
intersection detection on serial and parallel machines. In
N. Magnenat-Thalmann and D. Thalmann, editors, New
Trends in Computer Graphics (Proc. Computer Graphics
International’88), pages 288–297. Springer-Verlag, 1988.

[15] W. R. Franklin, V. Sivaswami, D. Sun, M. Kankanhalli, and
C. Narayanaswami. Calculating the area of overlaid polygons
without constructing the overlay. Cartography and
Geographic Information Systems, 21(2):81–89, 1994.

[16] W. R. Franklin, V. Sivaswami, D. Sun, M. Kankanhalli, and
C. Narayanaswami. Calculating the area of overlaid polygons

(a) (b)

Figure 8: The number of grid cells distribution considering the number of pairs of edges to be evaluated when
overlaying maps UsWaterBodies with UsBlockBoundaries: (a) 1-level uniform grid; (b) 2-level uniform grid.

without constructing the overlay. Cartography and
Geographic Information Systems, pages 81–89, Apr. 1994.

[17] W. R. Franklin, D. Sun, M.-C. Zhou, and P. Y. Wu. Uniform
grids: A technique for intersection detection on serial and
parallel machines. In Proceedings of Auto Carto 9: Ninth
International Symposium on Computer-Assisted
Cartography, pages 100–109, Baltimore, Maryland, April
1989.

[18] T. Granlund and the GMP development team. GNU MP:
The GNU Multiple Precision Arithmetic Library, 6.0.0
edition, 2014. http://gmplib.org/ (accessed on Jun-2015).

[19] GRASS Development Team. Geographic Resources Analysis
Support System (GRASS GIS) Software. Open Source
Geospatial Foundation, 2012. http://grass.osgeo.org
(accessed on Jun-2015).

[20] J. D. Hobby. Practical segment intersection with finite
precision output. Comput. Geom., 13(4):199–214, 1999.

[21] C. M. Hoffman. The problems of accuracy and robustness in
geometric computation. Computer, 22(3):31–40, 1989.

[22] Intel. Many integrated core architecture (MIC).
http://www.intel.com/content/www/us/en/architecture-
and-technology/many-integrated-core/intel-many-
integrated-core-architecture.html (accessed on
Jun-2015).

[23] W. Kahan. http://www.cs.berkeley.edu/~wkahan/, 2014.
online, retrieved 2015-06-22.

[24] L. Kettner, K. Mehlhorn, S. Pion, S. Schirra, and C. Yap.
Classroom examples of robustness problems in geometric
computations. Comput. Geom. Theory Appl., 40(1):61–78,
May 2008.

[25] D. E. Knuth. Surreal Numbers: How Two Ex-students
Turned on to Pure Mathematics and Found Total Happiness:
A Mathematical Novelette. Addison-Wesley, 1974.

[26] H. P. Kriegel, T. Brinkhoff, and R. Schneider. The
combination of spatial access methods and computational
geometry in geographic database systems. In In Proc 2nd
Symposium Spatial Database Systems, pages 5–21. Springer,
1991.

[27] C. Li. Exact geometric computation: theory and
applications,. PhD thesis, Department of Computer Science,
Courant Institute - New York University, January 2001.

[28] C. Li, S. Pion, and C.-K. Yap. Recent progress in exact
geometric computation. The Journal of Logic and Algebraic
Programming, pages 85–111, 2005.

[29] B. D. McCullough and H. D. Vinod. The numerical
reliability of econometric software. Journal of Economic
Literature, 37(2):633–665, 1999.

[30] K. Mehlhorn, R. Osbild, and M. Sagraloff. Reliable and
efficient computational geometry via controlled perturbation.
In M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener,
editors, ICALP (1), volume 4051 of Lecture Notes in
Computer Science, pages 299–310. Springer, 2006.

[31] J. Nievergelt and F. P. Preparata. Plane-sweep algorithms
for intersecting geometric figures. Commun. ACM,
25(10):739–747, Oct. 1982.

[32] Nvidia. GPGPU - general-purpose computing on graphics
processing unit. http://www.nvidia.com/object/what-is-gpu-
computing.html (accessed on
Jun–2015).

[33] T. O. D. project. http://data.nasa.gov/about, (accessed on
Jun–2015).

[34] H. Samet and R. E. Webber. Storing a collection of polygons
using quadtrees. ACM Trans. Graph., 4(3):182–222, July
1985.

[35] R. Skeel. Roundoff error and the patriot missile. SIAM
News, 25, Jul. 1992.

[36] B. Smith. Baarle-Nassau / Baarle-Hertog.
http://ontology.buffalo.edu/smith/baarle.htm,
(retrieved 29 Jan 2010), 2008.

[37] M. van Kreveld. Digital elevation models: overview and
selected TIN algorithms. In Course Notes for the CISM
Advanced School on Algorithmic foundations of Geographical
Information Systems. Department of Computer Science
Utrecht University, the Netherlands, aug 1996.
http://www.cs.uu.nl/docs/vakken/gis/TINalg.pdf,
online, retrieved 2015-06-23.

[38] P. van Oosterom. An R-tree based map-overlay algorithm. In
Proceedings of EGIS/MARI, pages 318–327, Paris, 1994.

[39] J. W. van Roessel. A new approach to plane-sweep overlay:
Topological structuring and line-segment classification.
Cartography and Geographic Information Systems, 18:49–67,
1991.

[40] B. E. Weinrich and M. Schneider. Use of rational numbers in
the design of robust geometric primitives for
three-dimensional spatial database systems. In Proceedings
of the 13th Annual ACM International Workshop on
Geographic Information Systems, GIS ’05, pages 163–172,
New York, NY, USA, 2005. ACM.

