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ABSTRACT

We present ParCube, which �nds the pairwise intersections in
a set of millions of congruent cubes. This operation is required
when computing boolean combinations of meshes or polyhedra in
CAD/CAM and additive manufacturing, and in determining close
points in a 3D set. ParCube is very compact because it is uses
a uniform grid with a functional programming API. ParCube is
very fast; even single threaded it usually beats CGAL’s elapsed
time, sometimes by a factor of 3. Also because it is FP, ParCube
parallelizes very well. On an Nvidia GPU, processing 10M cubes to
�nd 6M intersections, it took 0.33 elapsed seconds, beating CGAL
by a factor of 131. ParCube is independent of the speci�c par-
allel architecture, whether shared memory multicore Intel Xeon
using either OpenMP or TBB, or Nvidia GPUs with thousands of
cores. We expect the principles used in ParCube to apply to other
computational geometry problems. E�ciently �nding all bipartite
intersections would be an easy extension.
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1 INTRODUCTION

3D geometry applications often require �nding the intersecting
pairs in a large set of small objects. For instance, in additive man-
ufacturing (also known as 3D printing) or in computational �uid
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dynamics (CFD), we might wish to interpolate some property vary-
ing over space, such as density, from one mesh of an object to
another mesh of the same object. This requires knowing the vol-
umes of the intersections of all the tetrahedra of one mesh with the
tetrahedra of the other mesh. That requires knowing which pairs
of tetrahedra intersect.

Parallel processing is desirable, because the laws of physics do
not leave an obvious path to increasing the CPU speed for a single
processor. Indeed, a bit of information is e�ectively stored on an
integrated circuit in a small capacitor charged through a resistor.
This model remains valid when the bit is stored in a transistor that
is in either a on or o� state. Increasing the speed of switching this
bit requires reducing the bit’s resistance and capacitance. That has
physical problems, e.g., the circuit cannot be shrunk any more, and
also increases the power consumption to the point where the circuit
cannot be cooled.

Several competing parallel architectures are now available. The
easiest to program, often with OpenMP [27] or Intel Threading
Building Blocks (TBB) [16], is a multicore Intel Xeon processor.
For example, one processor board may have dual CPUs, each with
14 cores, each running two hyperthreads, for a total of 56 parallel
threads. Each thread runs its own instruction stream, and each has
access to the whole main memory, which could be up to 2TB. How-
ever when two threads might write the same address, expensive
interlocking with atomic operations is required. A naive paral-
lel program can easily take more elapsed time when using more
threads.

Nvidia’s GPUs are another widely used and very a�ordable plat-
form. GPUs, which started as graphics and gaming coprocessors,
are today part of about one third of all personal computers. In re-
sponse to customer demand, scienti�c computing functionality has
been added, and video output capability sometimes removed. Many
supercomputers comprise thousands of GPUs.

This paper uses the Nvidia GeForce GTX Titan X, a high-end
GPU costing USD1000 and introduced in 2015, with 3072 CUDA
cores clocked at 1GHz, 12GB of memory, and a peak single precision
�oating performance of 7 TFLOPS. However, nothing in ParCube is
speci�c to this model; it was developed on a Thinkpad W540 laptop
introduced in 2014. That machine has a smaller Quadro K2100M
GPU, which has only 576 cores clocked at 0.67Ghz. Although one
CUDA core is about only 5% as powerful as one Intel Xeon core,
still the aggregate power of a modern GPU is impressive.

The most direct way to program an Nvidia GPU is with the
CUDAAPI, which is C++with some language extensions and library
routines. However, at this low level, programming must consider
the hierarchy of execution threads into warps, blocks, and grids, and
several classes of memory, such as registers, shared, local, constant,
and global, with capacities and speeds ranging over factors of over
100. A warp is a set of 32 threads executing the same instruction (or
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idle); this is called Single Instruction Multiple Thread (SIMT). For
best performance, consecutive threads should access consecutive
words of the GPU memory. If one warp is blocked while waiting
for resources, then another warp can be e�ciently scheduled to
run. One good introduction to GPU programming is [2].

Various APIs built on top of CUDA are available, abstracting
away some of its complexities (and opportunities to optimize). This
project uses Thrust, [24, 26]. Thrust is a set of C++ templates in
header �les, modeled on STL, the Standard Template Libary. Thrust
has mostly a Functional Programming (FP) design. The only Thrust
data structure is a vector. Vectors can be mapped and reduced. One
useful vector transformation is the gather, which permutes the
vector by computing ci ← bai . Thrust also has an e�cient radix
sort, which is not FP since it is in-place. Except for precomputing a
combination table, ParCube’s code is straight line, and apart from
sorting, individual vector elements are not assigned, and no variable
needs to be changed from its initial value, all of which follows the
FP model.

Thrust’s model is also very e�cient. Routines execute in parallel,
utilizing as many cores as are available. The execution performance
penalty for using Thrust compared to a lower level abstraction layer
closer to CUDA, such as Nvidia CUB [25], might be a factor of three.
In return, the programming is much easier.

Another advantage of Thrust’s level of abstraction is that it al-
lows any of several backends, each exploiting di�erent parallel
hardware, to be selected at compile time. We have tested ParCube
with these backends: regular single threaded C++, CUDA, OpenMP,
and TBB. Therefore, ParCube can utilize whatever parallel hard-
ware is available.

The proper use of Thrust requires that an algorithm be expressed
in terms of the available functions. Explicit loops have very poor
performance. Each function call has a setup cost to initialize the
parallel environment, so that a few operations on large vectors are
much preferred to many operations on small vectors. The global
GPU memory has a latency of over 100 cycles, so that following
pointers will be slow unless many parallel threads do this simulta-
neously, while executing the same instructions. All this implies that
lists of di�erent lengths, tree-based data structures and recursive
algorithms do not easily parallelize.

Another advantage of this model is that the source code is very
compact—much of the sca�olding has been stripped away. That
also assists optimizing compilers and other automated tools that
reason about and transform the code.

2 PRIOR ART

The pairwise intersection of boxes is a classical computational ge-
ometry problem. Solutions are typically based either on the plane-
sweep technique [4, 28], or employ uniform grids [11], or hierar-
chical structures [3, 7, 19] to create a set of potentially intersecting
pairs of boxes, which is further re�ned by testing each pair for
intersection.

One well known sequential algorithm for detecting intersections
of boxes is Zomorodian and Edelsbrunner [28]. This was designed
to be very e�cient in practice and is a hybrid of a scanning and a
streaming algorithm. The basic idea is that a pair of intersecting
boxes must intersect in all dimensions. Thus, it performs a series

of 1D intersection computations (in each dimension) using either
a scanning approach or a streamed approach based on segment
and range trees (the scanning algorithm is also employed to prune
the trees). An adversary could pessimize this with a set of boxes
strung out along a diagonal so that they intersected in each separate
dimension, but not in 3D. However, it is very e�cient in practice and
can be generalized for higher dimensions, and so was implemented
in CGAL [5].

PBIG is another parallel algorithm for detecting intersections
of boxes on GPUs, Lo et al. [19]. It is based on a uniform grid to
cull the pairs of intersecting boxes. PBIG is complex, with assorted
low-level optimizations tailored to CUDA, such as compression. It
reports a speedup of 110× against the sequential algorithm available
in CGAL.

The contributions of our algorithm are as follows:
(1) ParCube is very compact because it is uses a uniform grid

with a functional programming API.
(2) ParCube is very fast; even single threaded it usually beats

CGAL, sometimes by 3×.
(3) Also because it is FP, ParCube parallelizes very well.
(4) On an Nvidia GPU, processing 10M cubes to �nd 6M in-

tersections, it took 0.33 elapsed seconds, beating CGAL by
131×.

(5) ParCube is independent of the speci�c parallel architecture,
whether shared memory multicore Intel Xeon using either
OpenMP or TBB, or Nvidia GPUs with thousands of cores.

(6) We expect the principles used in ParCube to apply to other
computational geometry problems.

3 THE ALGORITHM

In the following, symbol names may be multiple alphanumeric char-
acters, and multiplication of symbols is always expressed explicitly,
e.g., a · b. Vectors are boldfaced.

ParCube is a prototype designed to illustrate the power of geo-
metric programming at a higher level of abstraction, largely func-
tional programming, and using the uniform grid for parallel geo-
metric processing. The input is a set B = {bi } of n cubes, each with
edge length l inside a universe of size 1×1×1. Cube bi is de�ned by
(xi ,yi , zi ), the coordinates of its lower left front corner. To reduce
special cases, we require that

0 < xi ,yi , zi < 0.9999 − l .
The concept of ParCube extends to more general objects, such

as tetrahedra, but the implementation would be tedious. In any
case, tetrahedra could be enclosed in cubes and ParCube applied
to produce pairs of tetrahedra likely to intersect, because their
enclosing boxes do.

The desired output is a set {(bi1,bi2)} of pairs of cubes that
intersect, i.e.,(���|xbi1 − xbi2 ��� ≤ l

)
∧
(���|ybi1 − ybi2 ��� ≤ l

)
∧
(���zbi1 − zbi2 ��� ≤ l

)
.

If the coordinate type is �oat, then roundo� errors make this
indeterminate in some cases, so that di�erent programs compute
slightly di�erent sets of intersecting pairs. This pilot project ig-
nores that; in other programs, we address it by computing with
big rational numbers that use su�cient digits to store computation
results exactly [12, 13, 22].
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The naive quadratic-time algorithm to �nd intersecting pairs
of cubes would simply test all pairs. We use a uniform grid data
structure to �lter for subsets of cubes that probably intersect [1, 6,
8, 11, 15, 17, 20, 21, 23]. The uniform grid partitions the 1 × 1 × 1
universe into a 3D grid of д × д × д grid cells, for some natural
number д that is a function of the data. Abstractly, each grid cell
will store a set of the cubes intersecting it. The proper concrete
realization of this is important; we use a ragged array. All the cells’
contents are stored catenated in one array, a. A second array, b,
called the dope vector, with д3 + 1 elements, points to the start of
each cell’s contents in the �rst array. So, the i-element of the j-th
cell is

ai+bj

and the j-th cell contains bj+1 − bj elements. While constructing
the dope vector, we will temporarily use an auxiliary array with the
same size as the total number of (cell, cube) intersections, storing,
for each intersection, the id of the cell intersecting the cube.

Barbieri et al. [3] uses fast atomic operations to implement linked
lists for the contents of the cells. Linked lists are dynamic, and
permit elements to be inserted or deleted at any time. The extra
space they require could be compressed with CDR coding [14],
but that seems incompatible with SIMT. In contrast, once a ragged
array’s dope vector is computed, it is static, with most changes
requiring θ (n) time. However, it uses less memory, and can be
accessed in constant time. ParCube exploits that to assign array
elements in parallel.

For the uniform grid, we will chooseд = b0.9999/lc. This ensures
that each cube will intersect at most a block of 2 × 2 × 2 = 8 grid
cells. In the unusual case that a cube does not intersect the whole
block, we will assume that it does. This will later cause a few extra
cube-cube tests, but the intersecting pairs will still be correctly
computed.

The precise choice of д is not critical, within perhaps 50%. As
discussed in the cited papers, which also give experimental results,
parts of the algorithm run slower and other parts faster, making
the total time rather stable with varying д.

One misconception about the uniform grid needs to be addressed.
It is not a voxelization of the universe. The data is not discretized.
If the input is kept constant, changing д will not change the output,
but only the compute time.

For independently and identically distributed (i.i.d.) input, the
uniform grid reduces the expected execution time to linear in the
size of the input plus output [9]. This is still true if the density of
the input satis�es a Lipschitz condition, where the densest region is
a constant multiple of the average density, as the number of cubes
increases. Two major parts of the proof of the execution time are
as follows.

(1) The expected number of possibly intersecting cube pairs
that need testing is the mean of the square of the number
of cubes in each cell. However when the cubes are i.i.d, the
number of cubes in a cell is a Poisson random variable, so
the mean of the square is the square of the mean.

(2) Because of the constant ratio between the cell size and the
cube size, the probability that a pair of cubes that both inter-
sect the same cell intersect each other in the cell is constant.

The result is that the expected time spent testing cube pairs for
intersection is linear in the number of pairs that are found to inter-
sect.

A grid cell id is a 4-byte integer formed from the x , y, and z
indices of the cell in the grid as follows: x ·д2+y ·д+z. (We assume
that д ≤ 1000.) The algorithm’s strategy is as follows.

3.1 Strategy

(1) Compute a ragged array of the cubes overlapping each grid
cell, as follows.

(a) Compute a vector of the (cell, cube) pairs, ordered by cube
id. We will iterate over the cubes. Because we assume that
each cube overlaps 8 cells, we know each particular pair’s
location in the vector, and so can do this in parallel.

(b) Sort that vector by cell id and compact it to produce the
ragged array of cubes in cells.

(c) Note that this works quite well regardless of the di�erent
numbers of cubes in the various grid cells.

(2) Compute a vector of (cube, cube) pairs, listing the potential
intersections.

(a) Given the number of cubes in each cell, we can compute
the number of (cube, cube) pairs in each cell.

(b) Note that there is a lexicographic ordering of all combina-
tions of 2 objects selected from a set of k objects. We can
determine the 2 objects forming the i-th combination of
the
(k
2
)
combinations.

(c) Thus we can build the vector of (cube, cube) pairs in paral-
lel.

(3) Finally, in parallel, test whether each (cube, cube) pair actu-
ally intersects.

The challenge was to realize that high-level algorithm in terms
of Thrust functions. The detailed algorithm goes as follows.

3.2 Details

(1) Number the input points in order, so that the vector of point
ids is (0, 1, 2, 3, · · · ).

Note. Note that, in 1D, coordinate x will fall into grid cell

bx · дc.

(2) Compute the vector of the points’ cell ids, bp, from the point
coordinates: bpi = bxi · дc · д2 + byi · дc · д + bzi · дc.

Note. Thrust transform maps a function onto every element

of a vector, or onto every pair of corresponding elements from

two vectors. One vector may be an index vector (0, 1, 2, 3, · · · ).
That would not be stored explicitly; each element would be gen-

erated on demand with a make_counting_iterator function.

(3) Compute vector r to repeat each point id 8 times, i.e., ri =
bi/8c with transform. Since each cube intersects 8 cells, r
will be the indices of the cubes in the list of (cell, cube) pairs.
E.g.,

r = (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, · · · )

(4) Compute

α = (0, 1,д,д + 1,д2,д2 + 1,д2 + д,д2 + д + 1)
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the relative ids of the 8 grid cells intersecting cube i , o�set
from cell bpi containing the lower left front corner.

(5) Compute vector c1 as bp with each element repeated 8 times
with gather. That is, c1i = bp bi/8c . E.g., if bp = (3, 8, 2, · · · )
then
c1 = (3, 3, 3, 3, 3, 3, 3, 3, 8, 8, 8, 8, 8, 8, 8, 8, 2, 2, · · · )

(6) Compute vector c2 asα catenated together su�ciently many
times; c2i = α mod (i,8) with a gather. E.g.,
c2 = (0, 1, 5, 6, 25, 26, 30, 31, 0, 1, 5, 6, 25, 26, 30, · · · )

(7) Compute cubes = c1 + c2 (elementwise) with a transform.
cubes is the list of indices of the cubes intersecting the cells
in the list of (cell, cube) pairs. E.g.,
cubes = (3, 4, 8, 9, 28, 29, 33, 34, 8, 9, 13, 14, 33, 34, · · · )

(8) Bring together all the cubes in each cell thus: Sort r and
cubes by r together, i.e., �nd and apply the permutation of r
that orders it, and apply the same permutation also to cubes .

Note. Thrust lower_bound(a,v) binary-searches the ordered
vector a and returns where to insertv to keep the result ordered.

lower_bound(a,v) binary-searches the ordered vector a to see

where to insert eachvi . This parallelizes very well.

(9) Compute dc , a dope vector showing where in cubes each
new cell’s cubes start with lower_bound on r and an index
vector (0, 1, 2, · · · ). The j-th cube intersecting cell i will be
cubesdi+j .

(10) Free r since it won’t be needed again.
(11) Compute vector nc , the number of cubes in each cell, by

applying a Thrust adjacent_di�erence function to dc . That
is,

nci = dci+1 − dci
Now we have a ragged array of the cubes in each cell. We
have computed it in parallel with a few Thrust function
calls. �
Assuming that the vectors now look like this:

dc = (0, 2, 3, 3, 5, 7, 8, 10)

cubes = 1, 2 3 4, 5, 6 7 8, 9, 10
nc = (0, 2, 1, 0, 3, 1, 3)

the harder part is forming the set of potentially intersecting
pairs of cubes to produced this output:

pairs = (2, 1) (5, 4), (6, 4), (6, 5) (9, 8), (10, 8), (10, 9)

(12) Compute vectornp, the number of pairs of cubes in each cell,
by mapping a

(k
2
)
choose function over nc with a transform.

E.g.,
np = (0, 1, 0, 0, 3, 0, 3)

(13) Compute ntp, the total number of cube pairs by reducing np.
That is, ntp = ∑i npi . E.g., ntp = 7.

(14) Allocate pairs , a vector of size ntp of pairs of cube numbers,
to hold the pairs of cubes.

Note. Thrust exclusive_scan computes partial sums. If b =
exclusive_scan(a) then bi =

∑i−1
j=0 aj .

(15) Compute dp, a dope vector for pairs , by applying the ex-
clusive scan function to np. Cube pair j in cell i will be
pairsdpi+j . E.g., dp = (0, 1, 1, 1, 4, 4, 7)

(16) Compute a lexicographically ordered list u of
(m
2
)
ordered

pairs, wherem is the maximum number of cubes in any cell,
i.e.,
(1, 0), (2, 0), (2, 1), (3, 0), (3, 1), (3, 2), (4, 0), (4, 1), · · ·
Implementation choices not taken include:

(a) Precompute this and compile it into the source, so Par-
Cube would have contained no explicit loops. However,
the execution time saved would be insigni�cant.

(b) Code an explicit function computing this. However such
a function requires a sqrt and is slower to execute than a
run-time table lookup.

(17) Compute h0, a run length expansion of dp using np as the
run lengths. That is, in h0, dpi is repeated npi times. E.g.,
h0 = (1, 4, 4, 4, 7, 7, 7).

Note. Thrust exclusive scan by key extends the exclu-
sive_scan with an additional argument, a key vector. It does an

exclusive scan separately for each range of consecutive equal

keys. With the value vector (1, 1, 1, 1, 1, 1, · · · ) and the key

vector (2, 2, 2, 3, 6, 6), the result is (0, 1, 2, 0, 0, 1, · · · ).

(18) Compute h1 with an exclusive scan by key with key vector
h0 and value vector a list of 1. Now, within each cell, h1 will
index the pairs, from 0 up.
Letu0 be the vector containing the �rst element of each pair
of u, and u1 the vector of the second elements of each pair.

(19) The following steps will compute pairs , a list of pairs of
possibly intersecting cubes. We will describe the process for
computing the vector of the ids of the �rst cube in each pair;
the vector of second cube ids is analogous.
Use transform and gather to combine vectors h0, h1, and u0
into vector pairs0 as follows. pairs0i = cubesh0i+u0h1i

(20) Similarly, compute pairs1, the second component of each
pair.

(21) Combine pairs0 and pairs1 into a vector of cube pairs
pairs .

Note. Thrust remove_if compacts a vector by removing ele-

ments satisfying a given predicate. Like all Thrust functions,

this executes e�ciently in parallel.

(22) Use remove_if to remove cube pairs that don’t actually inter-
sect frompairs . (This could be made pure FP with a function
to copy the vector and remove elements from the copy. It
still parallelizes well.)

(23) Sort pairs .
This and the previous step were done in that order because
computation is faster than I/O on the GPU, and the previous
sorting step is often the slowest step.

Note. Thrust unique removes duplicate pairs from a sorted

vector.

(24) Use unique to remove duplicate pairs. They occurred when
the same two intersecting cubes both intersected the same
two (or more) cells.
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Figure 1: Parallel speedup with OpenMP and TBB

We have now computed the unique pairs of intersecting cubes. �

4 IMPLEMENTATION AND TESTING

We implemented ParCube in C++ using g++-7 and Thrust 1.8 on
a dual 8-core 3.1 Ghz Intel E5-2687W Xeon CPU with 128GB of
main memory running Ubuntu linux. However nothing in ParCube
depends on those speci�cs.

We tested four di�erent backends:
(1) regular single-threaded C++ on the Xeon,
(2) OpenMP (OMP), using 1, 2,4, 8, 16, or 32 threads on the Xeon,
(3) Intel Intel Threading Building Blocks (TBB), using 1, 2,4, 8,

16, or 32 threads on the Xeon, and
(4) CUDA 8.0 on an Nvidia GeForce GTX Titan X GPU.

We validated ParCube as follows. One of us implemented ParCube.
The other implemented another program using CGAL to solve the
same problem. We compared the number of intersections found by
the two programs for each test data set, and, for some tests, also
compared the lists of intersections. After debugging, everything
matched.

The essence of ParCube is under 200 lines of code. It is freely
available for nonpro�t research and education. The authors wel-
come external questions, comments, and feedback. To simplify the
programming, ParCube was written to process a list of axis-aligned
cubes all of the same size, but the concepts generalize. Our test cases
were random uniform i.i.d lists of cubes. We tested up the largest
cases that would �t in the GPU. For each number of input cubes,
we tested several di�erent cube sizes. Our performance metric was
wall clock elapsed time for the computation, starting after the data
had been read in. CPU time is not widely used for benchmarking
parallel programs.

Our largest tests are shown in Table 1 on the following page.
Each reported time is the average of �ve runs. Some highlights are
as follows.

(1) ParCube was up to 131× faster than CGAL.
(2) ParCube’s relative performance was usually better on the

harder cases: larger datasets, and data with more intersec-
tions.

(3) Even running single-threaded with no special backend, Par-
Cube was usually faster than CGAL, and for 10M cubes,
always faster, by up to a factor of three.
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Number of points: 10M

Figure 2: Times for 10M cubes of di�erent implementations

and di�erent grid sizes

(4) When using the Intel-speci�c TBB, one thread was slower
than not using TBB, but 32 threads ran about 7× faster than
single-threaded C++.

(5) The more generic OpenMP did not parallelize as well, and
ran about 4× faster on 32 threads.
Figure 1 shows the parallel speedup for TBB and OpenMP.

(6) One reason that multithreading exhibits less than a linear
speedup is that the Xeon overclocks itself when running
fewer threads. Indeed, power consumption in modern pro-
cessors depends on the number of computations being per-
formed each second. That number is totaled over all the
threads running on the processor. A processor can measure
its own temperature. When it gets hot, it lowers its clock
speed to reduce its power consumption. In contrast, when
only one thread is running, the processor’s clock speed may
be considerably higher than its o�cial speed. That is, the
processor can automatically overclock itself. This is nice, but
does complicate timing tests.

(7) ParCube ran best on the GPU: up to 54× faster than the
single-threaded CPU version, and 131× faster than CGAL.

(8) On small datasets, say 100K cubes with 41K unique intersec-
tions, it ran fast enough that the time (0.01 secs) was hard to
measure.

Table 2 gives the times for various components of the test run
with N = 10M , G = 400, L = 0.0025, which found 6M unique inter-
sections in 0.325 elapsed seconds on the GPU. (The total appears
slightly o� because each component time was rounded for display.)
The lines include references to the steps in Subsection 3.2. If a step
is not listed here, its time is bundled together with the immediately
following step that is listed, so that the total time is correct. There
is nothing special about this particular test case. Di�erent test cases
can have di�erent relative times, especially when they have di�er-
ent numbers of intersections. The relative performance CGAL and
the various backends of ParCube also depends on the grid size;
see Figure 2, which shows N = 10M . As always, the cube size is
slightly less than the grid cell size.

5 CONCLUSION AND FUTURE POSSIBILITIES

ParCube admits of many possible extensions.
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Table 1: ParCube vs CGAL performance

Times are wall-clock seconds starting after data is read in. Speedup compares CGAL to ParCube GPU.

CGAL ParCube Our

# Grid Edge # #Xsect #Uniq o GPU C++ OpenMP TBB Speed

Pts Size Len Pairs Pairs Pairs o o o 1 th. 2 th. 4 th. 8 th. 16 t. 32 t. 1 th. 2 th. 4 th. 8 th. 16 t. 32 t. up

10K 100 0.01 3K 1K 416 0.01 0.01 0.04 0.05 0.03 0.02 0.02 0.02 0.03 0.04 0.03 0.02 0.02 0.02 0.02 1.29
100K 100 0.01 326K 139K 41K 0.2 0.01 0.11 0.13 0.09 0.06 0.04 0.04 0.07 0.12 0.07 0.05 0.04 0.04 0.04 14.41
100K 200 0.005 42K 18K 5K 0.15 0.01 0.33 0.41 0.23 0.14 0.1 0.09 0.1 0.38 0.21 0.12 0.08 0.07 0.06 10.55
100K 300 0.003 33 19K 5K 2K 0.13 0.02 0.94 1.12 0.62 0.38 0.26 0.23 0.21 1.08 0.6 0.34 0.21 0.16 0.15 5.42
1M 100 0.01 32M 14M 4M 4.46 0.1 3.14 3.72 2.43 1.43 1.06 0.98 0.89 3.41 2.18 1.25 0.74 0.59 0.52 44.48
1M 200 0.005 4M 2M 512K 3.03 0.04 1.12 1.35 0.89 0.55 0.39 0.36 0.37 1.42 0.78 0.44 0.27 0.21 0.19 84.64
1M 300 0.003 33 2M 513K 152K 2.45 0.04 1.63 1.89 1.16 0.71 0.51 0.45 0.4 1.97 1.04 0.56 0.35 0.27 0.24 62.6
1M 400 0.0025 1M 216K 64K 2.2 0.06 2.89 3.45 2.19 1.17 0.82 0.69 0.61 3.32 1.93 0.97 0.6 0.46 0.39 35.8
10M 300 0.003 33 185M 51M 15M 47.72 0.5 18.77 22.01 14.1 8.9 6.08 5.28 4.63 21.86 14.36 7.78 4.61 3.47 2.92 96.21
10M 400 0.0025 128M 22M 6M 42.05 0.33 13.36 15.78 10.54 6.31 4.34 3.76 3.32 15.62 10.02 5.62 3.28 2.39 1.93 131.83
10M 500 0.002 100M 11M 3M 36.3 0.28 13.27 15.83 10.58 6.14 4.13 3.45 3.05 15.52 9.42 5.25 3.09 2.15 1.83 130.92
10M 600 0.001 67 83M 6M 2M 33.65 0.29 15.65 19.23 11.46 6.79 4.5 3.91 3.38 18.56 11.33 5.98 3.49 2.43 2.07 114.23
10M 700 0.001 43 70M 4M 1M 31.75 0.36 19.78 23.53 14.73 8.61 5.65 4.59 4.03 23.72 14.61 7.46 4.36 3.1 2.72 88.82

Table 2: Component times for the N = 10M , G = 400, L =
0.0025 test

Item # refers to the list in Subsection 3.2.
Component Item # Time (s)

Gather 5 0.002
Sort (cell,cube) pairs 8 0.076
Lower bound 9 0.021
Adjacent di�erence 11 0.004
Enumerate combinations 16 0.007
Decode run length 17 0.040
Compute h1 18 0.024
Compute pairs1 and 2 19 0.014
Form pairsc 21 0.013
Sort pairs 23 0.120
Unique pairs 24 0.006
Total 0.325

(1) To start, extend it to handle cubes of di�erent sizes.
(2) Finding bipartite intersections would also be easy. Here,

cubes are painted red or blue, and we want only the red–blue
intersections. When there are few red–blue intersections
but many unwanted red–red and blue–blue intersections,
sweep-line algorithms are ine�cient. (The problem is that
they must detect and discard the unwanted intersections, or,
alternatively, they must preprocess either the set of red-red
intersections or the set of blue-blue intersections.) However
a uniform grid’s expected time is still linear in the expected
number of red–blue intersections. ParCube would need to
be modi�ed as follows.

(a) In each cell, count nr the number of red cubes and nb the
number of blue cubes. The maximum possible number of
cube-cube pairs in that cell will be nr · nb .

(b) Reserve space in each cell for that many pairs.

(c) Instead of iterating through all
(nr+nb

2
)
combinations of

cubes in each cell, iterate through all
(nr
2
)
combinations of

red cubes and all
(nb
2
)
combinations of blue cubes, writing

pairs of a red cube and a blue cube into the cube-cube
vector.

Note. In this context, as throughout ParCube, the abstract

operation iterating is implemented with parallel Thrust func-

tions.

(d) Test each red-blue cube pair for actual intersection.
(3) Implement more powerful algorithms, such as computing

boolean combinations, and mass properties of boolean com-
binations, of many objects, whose individual properties are
graded, i.e., vary over space. Building on [10, 18], this would
be very useful in additive manufacturing.

(4) Extend ParCube to process datasets in higher dimensions,
such the 7D that some robotic planning occurs in.

(5) Optimize ParCube at a lower level by fusing separate Thrust
calls to reduce the quantity of data processed, using alterna-
tive libraries when indicated (e.g., on a CPU, the parallel STL
sort is much faster than Thrust’s sort), pro�ling, and �nally,
recoding in a lower level tool, perhaps CUB.

(6) Partition datasets too large to �t in the GPU’s memory into
chunks, each small enough to �t. This would e�ectively
be constructing a 2-level grid, with each coarse cell small
enough to �t in the GPU. There would need to be a �nal step
to remove duplicate intersecting pairs, where the two copies
occur in di�erent coarse cells.

The most general lesson from this work is that simple 3D geometric
algorithms expressed with uniform grids and functional program-
ming concepts can process large datasets quite e�ciently on either
GPUs or multicore CPUs.

This research was partially supported by CAPES (Ciencia sem
Fronteiras - grant 9085/13-0), CNPq.
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