We present a fast linear time algorithm that uses a block-cut tree for
workstation. This problem is the 2018 ACM SIGSPATIAL CUP chal-

1.1 The problem
The utility network is modeled as a graph G where the edges
(always bidirectional) represent the medium (e.g. pipes, wires, etc.)
where resources (e.g. water, gas, electricity, etc.) flow and vertices
represent connections. Also, G contains some special vertices called
controllers (like power plants or water stations) that are the source
of the resources.

Given a utility network and a set of vertices and edges (the
starting points), the upstream identification problem consists in
finding all the features (vertices and edges) that are in a simple path
between a controller and a starting point (in the rest of this paper we
call these output features simply upstream features). An example
of application is to find devices (cables, transformers, etc) that
are between power stations (controllers) and important electricity
consumers (starting points) in an electricity network. This analysis
could be employed to find features that are critical for providing a
reliable source of electricity to hospitals, factories, etc.

Thus, the input of the problem is a graph G composed of a
set of vertices V and edges E, a set of controllers C (which is a subset
of V) and a set of starting points S (which is a subset of the edges and
vertices). In the rest of this paper we call vertices/edges that
are either controllers or starting points important vertices/edges.

Figure 1a presents an example of utility network (represented
by the graph G_1) and detaches (on light blue) all the vertices and
edges on a simple path between controllers (vertices on black) and
starting points (the vertex on green).

1.2 Block-cut trees
The key technique employed in our algorithm is to use the block-
cut tree [2] of the network to find the upstream features. Given a
graph G, the block-cut tree of G (shortened to BC-tree, or $BC(G)$) is a
tree where the vertices are the blocks (biconnected components)
and articulations of G. There is an edge in BC between each vertex
representing a block and the vertices representing its articulations.

The leaves of a block-cut tree $BC(G)$ are associated to biconnected
components of the original graph and any path in $BC(G)$
alters vertices associated to biconnected components with ver-
tices associated to articulations.

Figure 1b presents the block-cut tree BC_1 of G_1. Each vertex
(represented by square rectangles) i of BC_1 is labeled with B_i and
the graph features (vertices and edges) that generated this vertex
are drawn inside the corresponding rectangle (in the rest of this paper
we consider these features to be inside the BC-tree vertex).
This is a result of Claim 1. For example, in Figure 1b vertex v.

Because of Claim 2, we only have to prove that the vertices u and c_2.

For simplicity, let us assume the network is connected (otherwise the problem can be solved independently for each connected component), that it contains both controllers and starting points (otherwise the output should be empty), its vertices do not contain loops and that a vertex cannot be a controller and a starting point simultaneously. Also, assume starting points can only be vertices. The special cases where some of these assumptions do not hold will be considered in Section 2.2.

Because of space limitations, we will present the proofs related to the process of finding upstream vertex features (the proofs for edge features are similar).

Claim 1. Let BG be a biconnected graph. Any vertex of BG is on a simple path between two vertices u, v of BG.

Proof: Since BG is connected, there is at least one simple path between u and v. Also, given any vertex w ($w \neq u, v$) in BG there are at least two paths Pu (between w and u) and Pv (between w and v) such that Pu and Pv do not share a vertex (other than w) and, thus, w is in a $u-v$ path. If all paths between w and u and between w and v shared a vertex x (s.t. $x = w$), then removing x would disconnect BG and, thus, it could not be biconnected.

Claim 2. Let A and C be two vertices of a a block-cut tree $BC(G)$, where both A and C contain important vertices and at least one of these important vertices is a controller and another one is a starting point. If vertex B of $BC(G)$ ($B \neq A, C$) is in the unique simple path connecting A to C, then any vertex of G in B is an upstream feature.

Proof: This is a result of Claim 1. For example, in Figure 1b vertex B_{20} is in the unique path between B_{13} (containing a controller) and B_{22} (containing a starting point). Thus, any vertex in B_{20} is an upstream feature.

Claim 3. Let A and C be the two endpoints of a path P in a block-cut tree $BC(G)$, where A and C contain important vertices and at least one of these important vertices is a controller and another one is a starting point. If both A and C contain at least one important vertex which is not an articulation in P, then all features of G in vertices of P are upstream features.

Proof: Because of Claim 2, we only have to prove that the vertices in A and in C are upstream features. A (the proof for B is identical) has at least one important vertex v that is not the articulation a, which is also present in the neighbor of A in the path. Assume v is a controller (if v is a starting point the proof is similar). If another vertex in A is a starting point, because of Claim 1 any vertex in A will be upstream. Otherwise, a vertex b of B is a starting point and, since there is a path between b and A and any vertex in A is in a simple path between v and a, then all vertices in A are upstream.

For example, any vertex of G_1 in path $B_{22}B_{21}B_9B_8B_5$ in Figure 1b is an upstream vertex. On the other hand, vertex a in path $B_9B_8B_5$ is not upstream (the only important vertex in B_5 is an articulation represented by vertex B_4 in the path).

Claim 4. Let T be a connected subgraph of a block-cut tree $BC(G)$. Assume T contains both controllers and starting points, that all leaves of T represent biconnected components and that each leaf of T contains at least one important vertex that is not an articulation still in a vertex of T. Then, all vertices of T are in a simple path between a vertex containing a controller and one containing a starting point.
Proof: If all leaves contain only controllers (resp. starting points), then at least one internal vertex \(V \) contain a starting point (resp. controller). Since \(T \) is a tree, any vertex will be in a path between \(V \) (containing a starting point) and a leaf (containing a controller).

If some leaves contain controllers and others contain starting points, any vertex of \(T \) will be in a simple path between a leaf containing a controller and a leaf containing a starting point.

Because of Claim 3, any vertex of \(G \) in \(T \) will be upstream. For example, all vertices of \(G_1 \) (Figure 1a) in Figure 1c are upstream. ■

Claim 5. Let \(L \) be a leaf of a block-cut tree \(BC(G) \), \(V(L) \) be the set of vertices in \(L \) and \(a \) be the articulation whose associated vertex \(A \) of \(BC(G) \) is adjacent to \(L \). If no vertex of \(V(L) - a \) is an important vertex, then, except possibly for \(a \), no vertex in \(L \) is upstream.

Proof: Suppose a vertex \(u \) \(\neq a \) in \(L \) was on a simple path \(p \) between two important vertices. Since the only vertex of \(L \) that may be important is \(a \), then \(p \) would contain \(a \) twice and, therefore, \(p \) could not be a simple path. For example, in Figure 1b \(B_1 \) does not have any important vertex and, thus, no simple path connecting two important vertices could contain a vertex (other than the articulation \(a \)) in \(B_1 \).

Claim 6. Let \(L \) be a leaf of a connected subgraph \(T \) of a block-cut tree \(BC(G) \), \(V(L) \) be the set of vertices in \(L \) and \(a \) be the articulation whose associated vertex \(A \) of \(BC(G) \) is adjacent to \(L \). If no vertex of \(V(L) - a \) is an important vertex, then, the upstream vertices in \(T \) are also in \(T - L \).

Proof: According to Claim 3, \(V(L) - a \) does not contain upstream vertices. Also, even though \(a \) may be an upstream vertex \(L \) may be removed because \(a \) is an articulation and, thus, a neighbor of \(L \) in \(T \) contains a copy of \(a \). If \(T \) has upstream vertices it is guaranteed that \(L \) has a neighbor (otherwise \(T \) would not have both kinds of important vertices).

For example, consider Figure 1b. \(BC_1 \), \(BC_1 \) - \(B_{16} \) and \(BC \) contain all the upstream vertices of the original graph. Observe that, even though \(B_{16} \) has an upstream feature \((u)\), there is a copy of this feature in other vertices \((since u \ is an articulation)\).

These claims suggest an algorithm (Algorithm 1) to compute the upstream features in a graph. Observe that after the loop on lines 2 and 5, according to Claim 4 all returned features are upstream from the starting points. Also, because of Claim 6, the loops on lines 2 and 5 do not remove any feature that should be in the output.

Algorithm 1 Computes the upstream features in a graph \(G \)

1. \(BC \leftarrow \text{Create the block-cut tree of } G \)
2. \(\textbf{while } BC \text{ has a leaf } L \text{ without important vertices do} \)
3. \(\text{Remove } L \text{ from } BC \)
4. \(\textbf{end while} \)
5. \(\textbf{while } BC \text{ has a leaf } L \text{ where } L \text{ has exactly one important vertex } v \text{ and } u \text{ is an articulation still in } BC \text{ do} \)
6. \(\text{Remove } L \text{ from } BC \)
7. \(\textbf{end while} \)
8. \(\text{return the vertices and edges of } G \text{ inside the vertices of } BC \)

and \(e_2 = (s, v) \), where \(s \) is an "artificial" starting point vertex. This process is illustrated in Figure 2. Then, each occurrence of the artificial edges or vertices in the output obtained from the modified dataset is replaced with the corresponding original starting point edges. It is clear that the output of this modified input is the same as the expected solution for the original dataset.

![Figure 2: Using artificial edges and vertex (right) to represent a starting point edge \(e \) (left).](image)

Another special case arises when a vertex has a loop. Loops cannot be in simple paths and, thus, they are ignored by the algorithm. However, in the GISCUP a path may start at an edge and, thus, a starting point edge that is a loop can be in a path to a controller (since the path would start on the edge and, thus, won’t include the loop vertex twice). This does not have to be explicitly handled by the algorithm since the creation of the artificial edges/vertices (as described above) replaces the loop with a cycle and, thus, the algorithm behaves as desired. This process is illustrated in Figure 3.

![Figure 3: Loop starting point \(e \) being replaced with two artificial edges and a starting point \(s \).](image)

In the GISCUP, vertices were allowed to be simultaneously controllers and starting points. We claim (without proof) that if a connected component contains at least two different important vertices and at least one of the vertices is simultaneously a starting point and a controller, then no special treatment is necessary. The only special case that needs to be handle separately happens when the connected component has only one important vertex \(v \) which is simultaneously a controller and a starting point. In this situation the only output feature generated from this component will be \(v \).

2.3 Implementation details

The algorithm described in this paper has been implemented in C++, and several optimization techniques were employed to improve its performance. The performance advantage of each design choice was carefully evaluated during the implementation process.

First, in the GISCUP contest the global identifier of each feature was always represented using a 32-digit string (where each digit is in hexadecimal) which can be encoded using two 64-bit integers. By employing this kind of representation we were able to not only
reduce the memory footprint of the algorithm, but also to accelerate operations like comparing the ids of two features.

Also, the articulation points and biconnected components were computed using Tarjan’s algorithm [4]. However, instead of reusing existing implementations of Tarjan’s algorithm (such as the one provided by the Boost Graph Library), we decided to reimplement it for performance purposes. Since Tarjan’s algorithm has to perform a DFS traversal in the entire graph, our custom implementation saves time by using this traversal to also identify connected components (CCs), ignoring CCs not containing controllers or starting points, determining whether or not a biconnected component has a controller (and/or a starting point), etc.

Furthermore, a custom parser has been created to read the JSON files representing the network. However, all the modules of our implementation have been designed to be loosely coupled and, thus, in situations where code reusability and maintainability is more important than performance, one can easily adapt the implementation to reuse a regular JSON parser instead of the custom one.

Finally, the implementation has been profiled and the bottlenecks were parallelized using OpenMP.

3 EXPERIMENTAL RESULTS

The algorithm has been evaluated on a workstation with an 8-core Intel Xeon CPU E5-2630 v3, 64 GB of RAM, and Linux operating system. Experiments have been performed on the sample datasets provided by the GISCUP organizers [3], and we always used 8 threads. Also, we created a variety of random connected graphs with different number of edges, vertices, starting points and controllers.

Table 1 presents the running times for some of the aforementioned datasets. Dataset EsriNaperville is the sample network “Esri’s Naperville Electric Network Dataset” provided by the GISCUP organizers while the other 8 ones were randomly created.

Graph6_100 and Graph6_1M contain, respectively, 100 and 10\(^6\) controllers and starting points. Their network is equal to Graph6’s. The other inputs contain one controller and one starting point.

Observe that, in general, the most time-consuming step of the algorithm is the computation of the biconnected components (Tarjan’s algorithm). Since this step performs a DFS on the graph (which is hard to parallelize efficiently because of data dependency) it was not implemented in parallel. The creation of the graph and of the block-cut tree, on the other hand, were performed in parallel (for example, considering Graph6_1M these steps took, respectively, 5 and 2 times longer to run sequentially).

As expected, there is little variation in the time for graphs with similar sizes. The variation on the time for graphs with different amounts of starting point and controllers is also small: Graph6_1M takes 37% longer to be processed than Graph6.

Besides performing experiments to evaluate the running time of the algorithm, we also manually created a variety of small graphs to evaluate the correctness of the algorithm. Special cases evaluated include disconnected graphs, graphs with loops, multiple edges, graphs where the important vertices are articulations, graphs where the starting point and controllers were the same vertices, etc.

4 CONCLUSIONS

We presented a fast algorithm for finding features in a network that are on a simple path between starting points and controllers. This algorithm presents a running time that is linear on the number of vertices and edges (its asymptotic running time does not depend on the number of starting points or controllers). Its efficiency makes it suitable, for example, for interactive applications where the user wants to quickly visualize the result of a modification on the network topology.

This research was partially supported by FAPEMIG, CAPES and CNPq.

REFERENCES

