\[R(\lambda) = \text{reflectivity of material} \]
\[B(\lambda) = \text{brightness of light} \]
\[C(\lambda) = \text{reflected light} \]
\[\lambda(\lambda) = \text{sensitivity of red cones} \]

\[\text{perceived redness} = \int \lambda(\lambda) C(\lambda) d\lambda \]
\[= \int \lambda(\lambda) B(\lambda) R(\lambda) d\lambda \]

You can have considerably different results giving same functions.
CORE SENSITIVITY

\[R \quad G \quad B \quad \text{W} \]

\[700 \quad 400 \quad 600 \quad 800 \]

\[p \in \text{cc/volxs} \]

(NE LIGHT)
COORDS
COLORS
NORMALS

BI-LINEAR
INTERPOLATE

RASTERIZER
For 3D use depth or Z buffer frame/color.

For each pixel, Z buffer has distance to closest object. To draw dib 2 = 5
2 = 10
2 = 15
When drawing an object, you overwrite a pixel only if the object is closer than whatever is already in that pixel. Then you update both the color and the depth for that pixel.